[1]
[2] Wei Ying. The study on Ge/Si heterojunction and its photodetectors characteristics[D]. Lanzhou: Lanzhou university, 2012. (in Chinese) 魏莹. Ge/Si 异质结及其光电探测器特性研究[D]. 兰州: 兰州大学, 2012.
[3] Kang Y, Morse M, Paniccia M J, et al. Monolithic Ge/Si avalanche photodiodes[C]//IEEE International Conference on Group IV Photonics, 2009: 25-27.
[4]
[5]
[6] Kang Y, Liu H D, Morse M, et al. Monolithic Ge/Si avalanche photodiodes with 340 GHz gain-bandwidth product[J]. Nature Photonics, 2008, 3(1): 59-63.
[7] Wen C H, Dai D X, Bowers J E, et al. Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain bandwidth product[J]. Optics Express, 2009, 17(15): 12641-12649.
[8]
[9]
[10] Bowers J E, Dai D X, Zaoui W S, et al. Resonant Si/Ge avalanche photodiode with an ultrahigh gain bandwidth product[C]//IEEE Photonics Society Winter Topicals Meeting Series(WTM), 2010: 111-112.
[11] Wegrzecka I. Design and properties of silicon avalanche photodiodes [J]. Opto-Electrons Rev, 2004, 12(1): 95-104.
[12]
[13] Zaoui W S, Chen H, Bowers J E, et al. Origin of the gain- bandwidth-product enhancement in separate-absorption-charge- multiplication Ge/Si avalanche photodiodes[J]. Optical Fiber Communication, 2009: 1-3.
[14]
[15]
[16] Morse M, Dosunmua O, Yina T, et al. Progress towards competitive Ge/Si photodetectors[C]//SPIE, 2008, 6996: 699614-1.
[17] Dai D X, Bowers J E, Lu Z, et al. Temperature dependence of Ge/Si avalanche photodiodes[C]//IEEE Device Research Conference (DRC), 2010: 231-232.
[18]
[19] Sidhu R, Zhang L, Tan N, et al. 2.4 m cutoff wavelength avalanche photodiode on InP substrate[J]. Electronics Letters, 2006, 42 (3): 181-182.
[20]
[21] Kang Y, Zadka M, Litski S, et al. Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 m light detection[J]. Opt Express, 2008, 16: 9365-9371.