[1] Piner R D, Zhu J, Xu F, et al. "Dip-Pen" nanolithography [J]. Science, 1999, 283: 661-663.
[2] Pease R F. Maskless lithography[J]. Microelectronic Engineering, 2005, 78-79: 381-392.
[3] Guo X W, Du J L, Guo Y K, et al. Large-area surface-plasmon polariton interference lithography[J]. Optics Letters, 2006, 31: 18.
[4] Kim Y, Kim S, Jung H, et al. Plasmonic nano lithography with a high scan speed contact probe[J]. Optics Express, 2009, 22(17): 19476-19485.
[5] Srituravanich W, Pan L, Wang Y, et al. Flying plasmonic lens in the near field for high-speed nanolithography[J]. Nature Nanotechnology, 2008, 3: 733-737.
[6] Shi S, Zhang Z, Du J, et al. Surface-plasmon-polaritons-assisted nanolithography with dual-wavelength illumination for high exposure depth[J]. Optics Letters, 2012, 37(2): 247-249.
[7] Gramotnev D K, Pile D F P, Vogel M W, et al. Local electric field enhancement during nanofocusing of plasmons by a tapered gap[J]. Physical Review, 2007, 75: 035431.
[8] Mehrotra P, Holzwarth C W, Blaikie R J. Solid-immersion Lloyd's mirror as a testbed for plasmon-enhanced ultrahigh numerical aperture lithography[C]//SPIE, 2011, 7970, DOI:  10.1117/12.879121.
[9] Gramotnev D K, Pile D F P, Vogel M W, et al. Local electric field enhancement during nanofocusing of plasmons by a tapered gap [J]. Phys Rev B, 2007, 75: 035431.