[1]
[2] He Y B, Tilocca A, Dulub O, et al. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101)[J]. Nat Mater, 2009, 24: 585-589.
[3]
[4] CampbeII C T, Grant A W, Starr D E, et al. Model oxide-supported metal catalysts: Energetics, particle thicknesses, chemisorption and catalytic properties[J]. Top Catal, 2001, 14(1): 43-51.
[5] Diebold U. The surface science of titanium dioxide[J]. Surf Sci Rep, 2003, 48: 53-229.
[6]
[7] Ganduglia-Pirovano M V, Hofmann A, Sauer J. Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges[J]. Surf Sci Rep, 2007, 62: 219-270.
[8]
[9] Pacchioni G. Modeling doped and defective oxides in catalysis with density functional theory methods: Room for improvements[J]. J Chem Phys, 2008, 128: 182505-182515.
[10]
[11] Besenbacher F, Lauritsen J V, Linderoth T R, et al. Atomic-scale surface science phenomena studied by scanning tunneling microscopy[J]. Surf Sci, 2009, 603: 1315-1327.
[12]
[13]
[14] Regan B O, Gratzel M. A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353: 737-739.
[15]
[16] Kwok On Ng, David Vanderbilt. Structure and apparent topography of TiO2(110)surfaces[J]. Phys Rev B, 1997, 56: 10544-10548.
[17]
[18] Labat F, Baranek P, Adamo C. Structural and electronic properties of selected rutile and anatase TiO2 surfaces: an ab-initio investigation[J]. Journal of Chemical Theory and Computation, 2008, 4: 341-352.
[19] Vittadini A, Selloni A, Rotzinger F P, et al. Structure and energetics of water adsorbed at TiO2 anatase(101)and(001)surfaces[J]. Phys Rev Lett, 1998, 81: 2954-2957.
[20]
[21] Gong X Q, Selloni A, Batzill M, et al. Steps on anatase TiO2(101)[J]. Nat Mater, 2006, 5(8): 665-670.
[22]
[23] Herman G S, Dohnalek Z, Ruzycki N, et al. Experimental investigation of the interaction of water and methanol with anatase-TiO2(101)[J]. J Phys Chem B, 2003, 107: 2788-2795.
[24]
[25] He Y B, Dulub O, Cheng H Z, et al. Evidence for the predominance of subsurface defects on reduced anatase TiO2(101)[J]. Phys Rev Lett, 2009, 102(10): 106105-106105.
[26]
[27]
[28] Zhang Z, Yates J T. Unraveling the diffusion of bulk Ti interstitials in rutile TiO2(110)by monitoring their reaction with O adatoms[J]. J A Chem Soc, 2010, 132: 12804-12807.
[29] Yang C T, Nianthrini B, Babu J, et al. CO2 photoreduction key step study: The adsorption of CO2 On TiO2 surfaces in the presence of Co-Catalyst[C]//Annual Meeting, 2012.
[30]
[31] Indrakanti V P, Kubicki J D, Schobert H H. Quantum chemical modeling of ground states of CO2 chemisorbed on anatase(001), (101), and(010)TiO2 surfaces[J]. Energy Fuels, 2008, 22(4): 2611-2618.
[32]
[33] Li Zongbao, Xia Wangbo, Chi Bo. First principles investigation of the conversion of N2O and CO to N2 and CO2 on a modified N+Fe/TiO2(101)surface[J]. RSC Adv, 2014, 34(4): 17896-17901.
[34]
[35]
[36] YangYing, Feng Qing, Wang Weihua, et al. First-principle study on the electronic and optical properties of the anatase TiO2(101)surface[J]. Journal of Semiconductors, 2013(7): 0730041-0930045.
[37] Ma X G, Tang C Q, Huang J Q, et al. First-principle calculation on the geometry and relaxation structure of anatase TiO2(101)surface[J]. Acta Phys Sin, 2006, 55(8): 4208-4212.
[38]
[39] Han Y, Liu C J, Ge Q F. Interaction of Pt clusters with the anatase TiO2(101)surface: a first principles study[J]. J Phys Chem B, 2006, 110(14): 7463-7472.
[40]
[41]
[42] Lu Bing. First Principles Study of Anatase TiO2(101)Surface[D]. Qingdao: Qingdao University of Science Technology, 2012: 28-29.
[43] Sorescu D C, Al-Saidi W A, Jordan K D. CO2 adsorption on TiO2(101)anatase: A dispersion-corrected density functional theory study[J]. Journal of Chemical Physics, 2011, 135(12): 124701.
[44]
[45] Feng Qing, Yue YuanXia, Wang WeiHua, et al. First-principles study on anatase TiO2(101)surface adsorption of NO[J]. Chin Phys B, 2014, 23(4): 0431011-0431018.
[46]
[47] Zhu H Q, Feng Qing. Microscopic characteristics mechanism of optical gas sensing material rutile titanium dioxide(110)surface adsorption of CO molecules[J]. Acta Phys Sin, 2014, 63(13): 1331011-1331018.