[1] Courjal N, Bernal M-p, Caspar A, et al. Lithium niobate optical waveguides and microwaveguides [OL/M].[2018-08-15]http://www.intechopen.com/chapters/61408.
[2] Jin H, Liu F M, Xu P, et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits [J]. Physical Review Letters, 2014, 113(10): 103601. doi:  10.1103/PhysRevLett.113.103601
[3] Poberaj G, Hu H, Sohler W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices [J]. Laser & Photonics Reviews, 2012, 6(4): 488-503.
[4] Lin J, Bo F, Cheng Y, et al. Advances in on-chip photonic devices based on lithium niobate on insulator [J]. Photonics Research, 2020, 8(12): 1910-1936. doi:  10.1364/PRJ.395305
[5] Kong Y, Bo F, Wang W, et al. Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices [J]. Advanced Materials, 2020, 32(3): 1806452. doi:  10.1002/adma.201806452
[6] Li M, Ling J, He Y, et al. Lithium niobate photonic-crystal electro-optic modulator [J]. Nature Communications, 2020, 11(1): 4123. doi:  10.1038/s41467-020-17950-7
[7] He M, Xu M, Ren Y, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbits−1 and beyond [J]. Nature Photonics, 2019, 13(5): 359-364. doi:  10.1038/s41566-019-0378-6
[8] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages [J]. Nature, 2018, 562(7725): 101-104. doi:  10.1038/s41586-018-0551-y
[9] Lu J, Al Sayem A, Gong Z, et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator [J]. Optica, 2021, 8(4): 539-544. doi:  10.1364/OPTICA.418984
[10] Zhang L, Hao Z, Luo Q, et al. Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes [J]. Optics Letters, 2020, 45(12): 3353-3356. doi:  10.1364/OL.393244
[11] Hao Z, Zhang L, Mao W, et al. Second-harmonic generation using d 33 in periodically poled lithium niobate microdisk resonators [J]. Photonics Research, 2020, 8(3): 311-317. doi:  10.1364/PRJ.382535
[12] Lu J, Surya J B, Liu X, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W [J]. Optica, 2019, 6(12): 1455-1460. doi:  10.1364/OPTICA.6.001455
[13] Chen J Y, Ma ZH, Sua Y M, et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings [J]. Optica, 2019, 6(9): 1244-1245. doi:  10.1364/OPTICA.6.001244
[14] Hao Z, Zhang L, Gao A, et al. Periodically poled lithium niobate whispering gallery mode microcavities on a chip [J]. Science China Physics, Mechanics & Astronomy, 2018, 61(11): 114211.
[15] He Y, Yang Q F, Ling J, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb [J]. Optica, 2019, 6(9): 1138-1144. doi:  10.1364/OPTICA.6.001138
[16] Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator [J]. Nature, 2019, 568(7752): 373-377. doi:  10.1038/s41586-019-1008-7
[17] Wang C, Zhang M, Yu M, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation [J]. Nature Communications, 2019, 10(1): 978. doi:  10.1038/s41467-019-08969-6
[18] Gong Z, Liu X, Xu Y, et al. Soliton microcomb generation at 2 μm in z-cut lithium niobate microring resonators [J]. Optics Letters, 2019, 44(12): 3182-3185. doi:  10.1364/OL.44.003182
[19] Gong Z, Liu X, Xu Y, et al. Near-octave lithium niobate soliton microcomb [J]. Optica, 2020, 7(10): 1275-1278. doi:  10.1364/OPTICA.400994
[20] Gao R, Zhang H, Bo F, et al. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 10^8 [J]. arXiv, 2021: 00399.
[21] Desiatov B, Lončar M. Silicon photodetector for integrated lithium niobate photonics [J]. Applied Physics Letters, 2019, 115(12): 121108. doi:  10.1063/1.5118901
[22] Izabella P, Surma B, Marek S, et al. Single crystal growth and optical properties of LiNbO3 doped with Er3+, Tm3+ and Mg2+[C]//Proc SPIE, 1995: 65-73.
[23] Palatnikov M, Biryukova I, Sidorov N, et al. Growth and concentration dependencies of rare-earth doped lithium niobate single crystals [J]. Journal of Crystal Growth, 2006, 291(2): 390-397.
[24] Sohler W, Das B K, Dey D, et al. Erbium-doped lithium niobate waveguide lasers [J]. Ieice Transactions On Electronics, 2005, 88(5): 990-997.
[25] Fleuster M, Buchal C, Snoeks E, et al. Optical and structural properties of MeV erbium‐implanted LiNbO3 [J]. Journal of Applied Physics, 1994, 75(1): 173-180. doi:  10.1063/1.355879
[26] Dutta S, Goldschmidt E A, Barik S, et al. Integrated photonic platform for rare-earth ions in thin film lithium niobate [J]. Nano Letters, 2020, 20(1): 741-747. doi:  10.1021/acs.nanolett.9b04679
[27] Wang S, Yang L, Cheng R, et al. Incorporation of erbium ions into thin-film lithium niobate integrated photonics [J]. Applied Physics Letters, 2020, 116(15): 151103. doi:  10.1063/1.5142631
[28] Pak D, An H, Nandi A, et al. Ytterbium-implanted photonic resonators based on thin film lithium niobate [J]. Journal Of Applied Physics, 2020, 128(8): 084302. doi:  10.1063/5.0016164
[29] Xia K, Sardi F, Sauerzapf C, et al. High-speed tunable microcavities coupled to rare-earth quantum emitters [J]. arXiv, 2021, 2104: 00389.
[30] Yang L, Wang S, Shen M, et al. Photonic integration of Er3+: Y2SiO5 with thin-film lithium niobate by flip chip bonding [J]. Optics Express, 2021, 29(10): 15497-15504. doi:  10.1364/OE.423659
[31] Jia Y, Yao Y, Wang S, et al. Dual-color upconversion luminescence emission from Er: LiNbO3 on-chip ridge waveguides [J]. Results in Physics, 2021, 27: 104526. doi:  10.1016/j.rinp.2021.104526
[32] He L, Özdemir Ş K, Yang L. Whispering gallery microcavity lasers [J]. Laser & Photonics Reviews, 2013, 7(1): 60-82.
[33] Yang L, Carmon T, Min B, et al. Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process [J]. Applied Physics Letters, 2005, 86(9): 091114. doi:  10.1063/1.1873043
[34] Wang Z, Fang Z, Liu Z, et al. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator [J]. Optics Letters, 2021, 46(2): 380-383. doi:  10.1364/OL.410608
[35] Liu Y, Yan X, Wu J, et al. On-chip erbium-doped lithium niobate microcavity laser [J]. Science China Physics, Mechanics & Astronomy, 2021, 64(3): 234262.
[36] Luo Q, Hao Z, Yang C, et al. Microdisk lasers on an erbium-doped lithium-niobite chip [J]. Science China Physics, Mechanics & Astronomy, 2021, 64(3): 234263.
[37] Luo Q, Yang C, Zhang R, et al. On-chip erbium-doped lithium niobate microring lasers [J]. Optics Letters, 2021, 46(13): 3275-3278. doi:  10.1364/OL.425178
[38] Yin D, Zhou Y, Liu Z, et al. Electro-optically tunable microring laser monolithically integrated on lithium niobate on insulator [J]. Optics Letters, 2021, 46(9): 2127-2130. doi:  10.1364/OL.424996
[39] Yang Z, Lu J, Zhuge M, et al. Controllable growth of aligned monocrystalline CsPbBr3 microwire arrays for piezoelectric-induced dynamic modulation of single-mode lasing [J]. Advanced Materials, 2019, 31(18): 1900647. doi:  10.1002/adma.201900647
[40] Gao R, Guan J, Yao N, et al. On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator [J]. Optics Letters, 2021, 46(13): 3131-3134. doi:  10.1364/OL.430015
[41] Zhang R, Yang C, Hao Z, et al. Integrated lithium niobate single-mode lasers by the Vernier effect [J]. Science China Physics, Mechanics & Astronomy, 2021, 64(9): 294216.
[42] Xiao Z, Wu K, Cai M, et al. Single-frequency integrated laser on erbium-doped lithium niobate on insulator [J]. Optics Letters, 2021, 46(9): 432921.
[43] Li T, Wu K, Cai M, et al. A single-frequency single-resonator laser on erbium-doped lithium niobate on insulator [J]. APL Photonics, 2021, 6(10): 101301.
[44] Lin J, Farajollahi S, Fang Z, et al. Coherent mode-combined ultra-narrow-linewidth single-mode micro-disk [J]. arXiv, 2021, 2104: 08843.