[1] Xing Zhan, Chen Xiaoyi, Peng Zhiyong, et al. Research progress and thinking of infrared aero-optical effect (Invited) [J]. Infrared and Laser Engineering, 2022, 51(4): 20220228. (in Chinese) doi:  10.3788/IRLA20220228
[2] Yin Xingliang. Principles of Aero-optics[M]. Beijing: China Astronautic Publishing House, 2003. (in Chinese)
[3] Xu Liang, Cai Yuanli. Imaging deviation through non-uniform flow fields around high-speed flying vehicles [J]. Optik, 2012, 123(13): 1177-1182. doi:  10.1016/j.ijleo.2011.07.046
[4] Jiang Tao, Ding Mingsong, Gao Tiesuo, et al. Numerical simulation of IR seeker high-speed flow field and its influence on ray transmission [J]. Acta Optics Sinica, 2012, 32(8): 16-20. (in Chinese)
[5] Jiang Tao, Ding Mingsong, Gao Tiesuo, et al. Computation and analysis of IR imaging impacted by the high-speed flow-field [J]. Acta Aerodynamica Sinica, 2013, 31(6): 727-732. (in Chinese)
[6] Xu Liang, Cai Yuanli. Influence of altitude on aero-optic imaging deviation [J]. Applied Optics, 2011, 50(18): 2949-2957. doi:  10.1364/AO.50.002949
[7] Wang Naixiang, Xu Yulei, Shi Lei, et al. Analysis of the impact of windward and angle of attack to the flow field around the optical window on high Mach condition [J]. Infrared and Laser Engineering, 2015, 44(4): 1267-1272. (in Chinese)
[8] Xu L, Xue D, Lv X. Computation and analysis of backward ray-tracing in aero-optics flow fields [J]. Optics Express, 2018, 26(1): 567-576. doi:  10.1364/OE.26.000567
[9] Yao Y, Xue W, Wang T, et al. Influence of LOS angle on aero-optics imaging deviation [J]. Optik, 2020, 202: 163732. doi:  10.1016/j.ijleo.2019.163732
[10] Wang H, Chen S, Du H, et al. Influence of altitude on aero-optic imaging quality degradation of the hemispherical optical dome [J]. Applied Optics, 2019, 58(2): 274-282. doi:  10.1364/AO.58.000274
[11] Chen Xi. Aero-optical imaging deviation and prediction for different line-of-sight roll angles[D]. Tianjin: Tianjin University of Technology, 2021. (in Chinese)
[12] Zhang B, He L, Yi S, et al. Multi-resolution analysis of aero-optical effects in a supersonic turbulent boundary layer [J]. Applied Optics, 2021, 60(8): 2242-2251. doi:  10.1364/AO.416947
[13] Zhang Ziye. Study and prediction of 0-25 km aero-optics imaging deviation for blunt head aircraft[D]. Tianjin: Tianjin University of Technology, 2022. (in Chinese)
[14] Xu Liang. Research on the aero-optical effects of an advanced infrared guided vehicle[D]. Xi’an: Xi’an Jiaotong University, 2011. (in Chinese)
[15] Wang Luyang, Xu Liang, Zhao Shiwei, et al. Influence of 0°–15° attack angle on aero-optical imaging deviation of a blunt-nose vehicle [J]. Applied Optics, 2023, 62(2): 391-397. doi:  10.1364/AO.470738
[16] Xu Liang, Zhang Ziye, Chen Xi, et al. Improved sparrow search algorithm-based BP neural networks for aero-optical imaging deviation prediction [J]. Journal of Optoelectronics · Laser, 2021, 32(6): 653-658. (in Chinese)
[17] Zhang Qingpeng. Study on suppression method of aero-optical effect of beam expanding system[D]. Chengdu: The Institute of Optics and Electronics, The Chinese Academy of Sciences, 2020. (in Chinese)
[18] Thuerey N, Weißenow K, Prantl L, et al. Deep learning methods for reynolds-averaged Navier–stokes simulations of airfoil flows [J]. AIAA Journal, 2020, 58(1): 25-36. doi:  10.2514/1.J058291
[19] Ding Haolin, Yi Shihe, Zhao Xinhai. Experimental investigation of aero-optics induced by supersonic film based on near-field background-oriented schlieren [J]. Applied Optics, 2019, 58(11): 2948-2962. doi:  10.1364/AO.58.002948
[20] Sun Xiangyu. Integrated design method of guidance and control for hypersonic vehicles[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)