[1] Reddy D V, Nerem R R, Nam S W, et al. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1 550 nm [J]. Optica, 2020, 7(12): 1649-1653. doi:  10.1364/OPTICA.400751
[2] Hadfield R H. Single-photon detectors for optical quantum information applications [J]. Nature Photonics, 2009, 3(12): 696-705. doi:  10.1038/nphoton.2009.230
[3] Tobin R, Halimi A, Mccarthy A, et al. Three-dimensional single photon imaging through obscurants [J]. Optics Express, 2019, 27(4): 4590-4611. doi:  10.1364/OE.27.004590
[4] Stoker J M, Abdullah Q A, Nayegandhi A, et al. Evaluation of single photon and Geiger mode lidar for the 3D elevation program [J]. Remote Sensing, 2016, 8(9): 767. doi:  10.3390/rs8090767
[5] Mendenhall J A, Candell L M, Hopman P I, et al. Design of an optical photon counting array receiver system for deep-space communications [J]. Proceedings of the IEEE, 2007, 95(10): 2059-2069. doi:  10.1109/JPROC.2007.905098
[6] Wang C, Wang J, Xu Z, et al. BER improvement in SPAD-based photon-counting optical communication system by using automatic attenuation control technique [J]. Optics Letters, 2022, 47(8): 1956-1959. doi:  10.1364/OL.454370
[7] Xu Zhongyuan, Sun Shengli, Lu Wei. Calibration results of SPAD in single-photon detection for space targets [J]. Semiconductor Optoelectronics, 2010, 31(2): 5. (in Chinese) doi:  10.16818/j.issn1001-5868.2010.02.043
[8] Aull B F, Loomis A H, Young D J, et al. Geiger-mode avalanche photodiodes for three-dimensional imaging [J]. Lincoln Laboratory Journal, 2002, 13(2): 335-349.
[9] Itzler M A, Entwistle M, Jiang X, et al. Geiger-mode APD single-photon cameras for 3D laser radar imaging[C]//2014 IEEE Aerospace Conference. IEEE, 2014: 1-12.
[10] Yuan P, Sudharsanan R, Bai X, et al. 32×32 Geiger-mode ladar camera[C]//Laser Radar Technology and Applications XV. SPIE, 2010, 7684: 106-117.
[11] Kondratko P. Geiger-mode Avalanche Photodiode (GmAPD) single photon receiver technology[C]//Applications of Lasers for Sensing and Free Space Communications, 2021: M2A.2.
[12] Dries J C, Miles B, Stettner R. A 32×32 pixel FLASH laser radar system incorporating InGaAs PIN and APD detectors[C]//Laser Radar Technology and Applications IX. SPIE, 2004, 5412: 250-256.
[13] Marino R M, Davis W R. Jigsaw: a foliage-penetrating 3D imaging laser radar system [J]. Lincoln Laboratory Journal, 2005, 15(1): 23-36.
[14] Dumanis Daniel. Airborne ladar imaging research testbed [D]. United States: MIT Lincoln Laboratory, 2011.
[15] Clifton W E, Steele B, Nelson G, et al. Medium altitude airborne Geiger-mode mapping LIDAR system[C]//Laser Radar Tech-nology and Applications XX; and Atmospheric Propagation XII. SPIE, 2015, 9465: 39-46.
[16] Albota Marius, Gurjar Rajan, Mangognia Anthony, et al. The airborne optical systems testbed (AOSTB) [R]. United States: MIT Lincoln Laboratory, 2017.
[17] Sun Jianfeng, Jiang Peng, Zhang Xiuchuan, et al. Experimental research of 32×32 InGaAs Gm-APD arrays laser active imaging [J]. Infrared and Laser Engineering, 2016, 45(12): 1206006. (in Chinese) doi:  10.3788/IRLA201645.1206006
[18] Ge Peng, Guo Jingjing, Chen Cong, et al. Photon-counting 3D imaging based on Geiger-mode APD array [J]. Infrared and Laser Engineering, 2020, 49(3): 0305007. (in Chinese) doi:  10.3788/IRLA202049.0305007
[19] Itzler M A, Entwistle M, Owens M, et al. Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging[C]//Detectors and Imaging Devices: Infrared, Focal Plane, Single Photon. SPIE, 2010, 7780: 387-401.
[20] Smith G M, Donnelly J P, Mcintosh K A, et al. Design and reliability of mesa-etched InP-based Geiger-mode avalanche photodiodes[C]//Conference on Lasers & Electro-optics. IEEE, 2006: CThD7.
[21] Heinrichs R, Aull B F, Marino R M, et al. Three-dimensional laser radar with APD arrays[C]//Laser Radar Technology and Applications VI. SPIE, 2001, 4377: 106-117.
[22] Itzler M A, Entwistle M, Owens M, et al. Comparison of 32×128 and 32×32 Geiger-mode APD FPAs for single photon 3D LADAR imaging[C]//Advanced Photon Counting Techniques V. SPIE, 2011, 8033: 97-108.
[23] Younger R D, Donnelly J P, Goodhue W D, et al. Crosstalk characterization and mitigation in Geiger-mode avalanche photodiode arrays[C]//2016 IEEE Photonics Conference (IPC). IEEE, 2016: 260-261.
[24] Acerbi F, Tosi A, Zappa F. Avalanche current waveform estimated from electroluminescence in InGaAs/InP SPADs [J]. IEEE Photonics Technology Letters, 2013, 25(18): 1778-1780. doi:  10.1109/LPT.2013.2275008
[25] Younger R D, McIntosh K A, Chludzinski J W, et al. Crosstalk analysis of integrated Geiger-mode avalanche photodiode focal plane arrays[C]//Society of Photo-optical Instrumentation Engi-neers, 2009, 7320: 73200Q.
[26] Diagne M, McIntosh A, Donnelly J, et al. Advances in InP/InGaAs Geiger-mode APD focal plane arrays (Conference Presentation)[C]//Advanced Photon Counting Techniques XII. SPIE, 2018, 10659: 1065904.
[27] Yuan P, Siddiqi N, Zubrod A R, et al. High performance InGaP Geiger-mode avalanche photodiodes[C]//Laser Radar Techno-logy and Applications XXV. SPIE, 2020, 11410: 62-67.
[28] Donnelly J P, Duerr E K, Mcintosh K A, et al. Design considerations for 1.06 μm InGaAsP-InP Geiger-mode ava-lanche photodiodes [J]. IEEE Journal of Quantum Electronics, 2006, 42(8): 797-809. doi:  10.1109/JQE.2006.877300
[29] Fang Y Q, Chen W, Ao T H, et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm [J]. Review of Scientific Instruments, 2020, 91(8): 083102. doi:  10.1063/5.0014123
[30] Chapman D C, Vineis C J, Oakley D C, et al. Growth and characterization of GaInAsP/InP-based Geiger-mode avalanche photodiodes [J]. Journal of Crystal Growth, 2008, 310(7-9): 2365-2369. doi:  10.1016/j.jcrysgro.2007.11.043
[31] Pestana N, Clark H, MacDonald J, et al. Evaluation of asynchronous geiger-mode avalanche photodiode arrays for deep-space optical communications[C]//Advanced Photon Counting Techniques XV. SPIE, 2021, 11721: 56-64.
[32] Aull B. 3D imaging with Geiger-mode avalanche photodiodes [J]. Optics and Photonics News, 2005, 16(5): 42-46. doi:  10.1364/OPN.16.5.000042
[33] Aull B F, Loomis A H, Young D J, et al. Three-dimensional imaging with arrays of Geiger-mode avalanche photodiodes[C]//Semiconductor Photodetectors. SPIE, 2004, 5353: 105-116.
[34] Kaushal H, Kaddoum G. Optical communication in space: Challenges and mitigation techniques [J]. IEEE Communi-cations Surveys & Tutorials, 2016, 19(1): 57-96.
[35] Grein M E, Elgin L E, Robinson B S, et al. Efficient communication at telecom wavelengths using wavelength conversion and silicon photon-counting detectors[C]//Free-Space Laser Communications VII. SPIE, 2007, 6709: 307-311.
[36] Lu W, Krainak M A, Yang G, et al. Low noise, free running, high rate photon counting for space communication and ranging[C]//Advanced Photon Counting Techniques X. SPIE, 2016, 9858: 104-114.
[37] Aull B, Burns J, Chen C, et al. Laser radar imager based on 3D integration of Geiger-mode avalanche photodiodes with two SOI timing circuit layers[C]//2006 IEEE International Solid State Circuits Conference-Digest of Technical Papers. IEEE, 2006: 1179-1188.
[38] Itzler M, Salzano G, Entwistle M, et al. Asynchronous Geiger-mode APD cameras with free-running InGaAsP pixels (Con-ference Presentation)[C]//Advanced Photon Counting Tech-niques XI. SPIE, 2017, 10212: 102120K.
[39] Lindner S, Zhang C, Antolovic I M, et al. A 252×144 SPAD pixel flash lidar with 1728 dual-clock 48.8 ps TDCs, integrated histogramming and 14.9-to-1 compression in 180 nm CMOS technology[C]//2018 IEEE Symposium on VLSI Circuits. IEEE, 2018: 69-70.
[40] Henderson R K, Johnston N, Hutchings S W, et al. A 256×256 40 nm/90 nm CMOS 3D-stacked 120 dB dynamic-range recon-figurable time-resolved SPAD imager[C]//2019 IEEE Interna-tional Solid-State Circuits Conference-(ISSCC). IEEE, 2019: 106-108.