[1] Mironov E A, Voitovich A V, Starobor A V, et al. Compensation of polarization distortions in Faraday isolators by means of magnetic field inhomogeneity[J]. Applied Optics, 2014, 53(16): 3486-3491.
[2] Li Wei, Wu Zichun, Chen Xi, et al. A high power fiber laser with 1 kW[J]. High Power Laser and Particle Beams, 2006, 18(6): 890-895. (in Chinese) 李伟, 武子淳, 陈曦, 等. 大功率光纤激光器输出功率突破1 kW[J]. 强激光与粒子束, 2006, 18(6): 890-895.
[3] Khazanov E A. Compensation of thermally induced polarization distortions in Faraday isolators[J]. Quantum Electronics, 1999, 29(1): 59-64.
[4] Ge Tingwu, Lu Dan, Wu Jian, et al. Depolarization in high power Faraday isolators with single mode and multi-mode laser incidences[J]. High Power Laser and Particle Beams, 2010, 22(6): 1229-1233. (in Chinese) 葛廷武, 陆丹, 伍剑, 等. 高功率隔离器单模与多模工作退偏特性[J]. 强激光与粒子束, 2010, 22(6): 1229-1233.
[5] Zhao Qin, Zhang Haitao, Zheng Chao, et al. Investigation of nonlinear and thermal effects of high power pulsed laser isolators[J]. High Power Laser and Particle Beams, 2013, 188(2): 281-286. (in Chinese) 赵钦, 张海涛, 郑超, 等. 高功率脉冲光隔离器非线性及热效应分析[J]. 强激光与粒子束, 2013, 188(2): 281-286.
[6] Snetkov I L, Mukhin I, Palashov O V, et al. Compensation of thermally induced depolarization in Faraday isolators for high average power lasers[J]. Opt Express, 2011, 19(7): 6374-6384.
[7] Victor Zelenogorsky, Oleg Palashov, Efim Khazanov, et al. Adaptive compensation of thermally induced phase aberrationsin Faraday isolators by means of a DKDP crystal[J]. Optics Communications, 2007, 278: 8-13.
[8] Ivan Mukhin, Alexandr Voitovich. 2.1 Tesla permanent magnet Faraday isolator for subkilowatt average power lasers[J]. Optics Communications, 2009, 282: 1969-1972.