[1] Jiao Jianchao, Su Yun, Wang Baohua, et al. Development and application of GEO membrane based diffraction optical imaging system [J]. Space International, 2016, 6: 49-55. (in Chinese)
[2] Zhu Jinyi, Xie Yongjun. Large aperture lidar receiver optical system based on diffractive primary lens [J]. Infrared and Laser Engineering, 2017, 46(5): 0518001. (in Chinese) doi:  10.3788/IRLA201746.0518001
[3] Hu Xuan, Li Daojing. Space-based synthetic aperture LiDAR system with 10 m diffractive aperture [J]. Chinese Journal of Lasers, 2018, 45(12): 0510010. (in Chinese)
[4] Li Daojing, Hu Xuan, Zhou Kai, et al. Synthetic aperture Lidar imaging detection based on conformal diffractive optical system [J]. Acta Optical Sinica, 2020, 40(4): 0428001. (in Chinese)
[5] Ren Zhibin, Hu Jiasheng, Tang Honglang, et al. Study on chromatic aberration correction of 10 meter large aperture membrane diffractive primary lens [J]. Acta Optica Sinica, 2017, 46(4): 422004. (in Chinese)
[6] Wang Bingxue, Zhang Qiheng, Chen Changbin, et al. A mathematical model for operating range of a staring IR search and track system [J]. Opto-Electronic Engineering, 2004, 031(7): 8-11. (in Chinese)
[7] 况耀武. 红外/激光双模导引头光学系统设计研究[D]. 哈尔滨工业大学, 2009.

Kuang Yaowu. Study on the optical system of dual-mode infrared/laser seeker[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese)
[8] Luo Zhenying, Bai Lu, Ning Hui, et al. Analysis of operating range of infrared detection system based on NETD [J]. Infrared, 2017, 38(5): 27-30. (in Chinese) doi:  10.3969/j.issn.1672-8785.2017.05.005
[9] Wu Limin, Zhou Feng, Wang Huaiyi. Study on the relationship between the infrared detectors background limit detectivity and the optical systems work temperature [J]. Spacecraft Recovery & Remote Sensing, 2010, 31(1): 36-41. (in Chinese) doi:  10.3969/j.issn.1009-8518.2010.01.006
[10] Wang Xiaojian, Liu Yang, Chen Lei, et al. Discussion on the operation range of the infrared imaging system for point target expressed by NETD and ΔT [J]. Infrared and Laser Engineering, 2008, 37(S2): 2. (in Chinese)
[11] Skolnik M I. Radar Handbook[M]. New York: The McGraw-Hill Companies Inc, 2010.
[12] Nan Rendong, Jiang Peng. 500 m aperture spherical radio telescope (FAST) [J]. Journal of Mechanical Engineering, 2017, 53(17): 1-3. (in Chinese)
[13] EVN and Global VLBI results and images[EB/OL]. [2019-12-13]. http://old.evlbi.org/gallery/images.html.
[14] Li Daojing, Du Jianbo, Ma Meng, et al. System analysis of spaceborne aperture ladar [J]. Infrared and Laser Engineering, 2016, 45(11): 262-269. (in Chinese)
[15] Barber Z W, Dahl J R. Synthetic aperture ladar imaging demonstrations and information at very low return levels [J]. Applied Optics, 2014, 53(24): 5531-5537. doi:  10.1364/AO.53.005531
[16] Ke X, Chen J. Experimental investigation on non-optical heterodyne detection technology of 1 km atmospheric laser communication system [J]. Journal of Applied Sciences, 2014(4): 7.
[17] 王海. 相干光通信零差BPSK系统的设计[D]. 电子科技大学.

Wang Hai. Design of a homodyne BPSK system for coherent optical communication[D]. Chengdu: University of Electronic Science and Technology of China, 2009.
[18] Yaacobi A, Sun J, Moresco M, et al. Intergrated phased array for wide-angle beam steering[J]. Optics Letters, 2014, 39(15): 4575-4578.
[19] Jie Sun, Erman Timurdogan, Ami Yaacobi, et al. Large-scale nanophotonic phased array [J]. Nature, 2013, 493.7431: 195-199.