[1] Lu Y, Li X, Tian Q, et al. Progress in marine oil spill optical remote sensing:detected targets, spectral response characteristics, and theories[J]. Marine Geodesy, 2013, 36(3):334-346.
[2] Fingas M, Brown C E. A Review of oil spill remote sensing[J]. Sensors, 2017, 18(1):91.
[3] Hu J, Wang D. Monitoring method of ocean oil spilling based on remote sensing[J]. Environment Protection Science, 2014, 40(1):68-73. (in Chinese)
[4] Hu C, Müller-Karger F E, Taylor C, et al. MODIS detects oil spills in lake maracaibo, venezuela[J]. Eos, Transactions American Geophysical Union, 2003, 84(33):313-319.
[5] Lu Y, Tian Q, Li X. The remote sensing inversion theory of offshore oil slick thickness based on a two-beam interference model[J]. Science China Earth Sciences, 2011, 54(5):678-685.
[6] Lu Y, Tian Q, Wang X, et al. Determining oil slick thickness using hyperspectral remote sensing in the Bohai Sea of China[J]. International Journal of Digital Earth, 2013, 6(1):76-93.
[7] Leifer I, Lehr W J, Simecek-Beatty D, et al. State of the art satellite and airborne marine oil spill remote sensing:application to the BP deepwater horizon oil spill[J]. Remote Sensing of Environment, 2012, 124:185-209.
[8] Lu Y, Zhan W, Hu C. Detecting and quantifying oil slick thickness by thermal remote sensing:a ground-based experiment[J]. Remote Sensing of Environment, 2016, 181:207-217.
[9] Brekke C, Solberg A H S. Oil spill detection by satellite remote sensing[J]. Remote Sensing of Environment, 2005, 95(1):1-13.
[10] Keramitsoglou I, Cartalis C, Kiranoudis C T. Automatic identification of oil spills on satellite images[J]. Environmental Modelling & Software, 2006, 21(5):640-652.
[11] Brown C E, Fingas M F. Review of the development of laser fluorosensors for oil spill application[J]. Marine Pollution Bulletin, 2003, 47(9):477-484.
[12] Lennon M, Babichenko S, Thomas N, et al. Detection and mapping of oil slicks in the sea by comined use of hyperspectral imagery and laser induced fluorescence[J]. EARSeL eProceedings, 2006, 5:120-128.
[13] Jiang W T, Li J W, Yao X L, et al. Fluorescence hyperspectral imaging of oil samples and its quantitative applications in component analysis and thickness estimation[J]. Sensors, 2018, 18(12):10.
[14] Gao F, Li J, Lin H, et al. Oil pollution discrimination by an inelastic hyperspectral Scheimpflug lidar system[J]. Opt Express, 2017, 25(21):25515-25522.
[15] He L, Song X, Yu F, et al. Potential risk and prevention of phytoplankton outbreak to water-cooling system in nuclear power plant in Fangchenggang, Guangxi[J]. Oceanologiaet Limnologia Sinica, 2019, 50(3):700-706.(in Chinese)
[16] Stumpf R P, Culver M E, Tester P A, et al. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data[J]. Harmful Algae, 2003, 2(2):147-160.
[17] Alexander R, Gikuma-Njuru P, Imberger J. Identifying spatial structure in phytoplankton communities using multi-wavelength fluorescence spectral data and principal component analysis[J]. Limnology and Oceanography:Methods, 2012, 10(6):402-415.
[18] Escoffier N, Bernard C, Hamlaoui S, et al. Quantifying phytoplankton communities using spectral fluorescence:the effects of species composition and physiological state[J]. Journal of Plankton Research, 2014, 37(1):233-247.
[19] Gao F, Lin H, Chen K, et al. Light-sheet based two-dimensional Scheimpflug lidar system for profile measurements[J]. Optics Express, 2018, 26(21):27179-27188.
[20] Chen K, Gao F, Chen X, et al. Overwater light-sheet Scheimpflug lidar system for an underwater three-dimensional profile bathymetry[J]. Applied Optics, 2019, 58(27):7643-7648.
[21] Dirk C W, Delgado M F, Olguin M, et al. A prism-grating-prism spectral imaging approach[J]. Studies in Conservation, 2009, 54(2):77-89.
[22] Cai F, Wang D, Zhu M, et al. Pencil-like imaging spectrometer for bio-samples sensing[J]. Biomedical Optics Express, 2017, 8(12):5427-5436.
[23] Chen J, Cai F, He R, et al. Experimental demonstration of remote and compact imaging spectrometer based on mobile devices[J]. Sensors, 2018, 18(7):1989.
[24] Li J, Jiang W, Yao X, et al. Fast quantitative fluorescence authentication of milk powder and vanillin by a line-scan hyperspectral system[J]. Applied Optics, 2018, 57(22):6276-6282.
[25] Huseynova T, Waring G O, Roberts C, et al. Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and scheimpflug imaging analysis in normal eyes[J]. American Journal of Ophthalmology, 2014, 157(4):885-893.
[26] Faria-Correia F, Ambrósio Jr R. Clinical applications of the scheimpflug principle in ophthalmology[J]. Revista Brasileira de Oftalmologia, 2016, 75:160-165.
[27] Miks A, Novak J, Novak P. Analysis of imaging for laser triangulation sensors under Scheimpflug rule[J]. Optics Express, 2013, 21(15):18225-18235.
[28] Zhao G, Ljungholm M, Malmqvist E, et al. Inelastic hyperspectral lidar for profiling aquatic ecosystems[J]. Laser & Photonics Reviews, 2016, 10(5):807-813.
[29] Nakamura S. Background story of the invention of efficient InGaN blue-light-emitting diodes (nobel lecture)[J]. Angewandte Chemie International Edition, 2015, 54(27):7770-7788.
[30] Pope R M, Fry E S. Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements[J]. Applied Optics, 1997, 36(33):8710-8723.
[31] Sun L. Research on remote sensing technology of ocean environmental parameters based on laser induced fluorescence[D]. Harbin:Harbin Institute of Technology, 2016. (in Chinese)
[32] Hakala T, Suomalainen J, Kaasalainen S, et al. Full waveform hyperspectral LiDAR for terrestrial laser scanning[J]. Optics Express, 2012, 20(7):7119-7127.