[1] Tsui K H, Lin Q F, Chou H T, et al. Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics[J]. Adv Mater, 2014, 26: 2805-2811.
[2] Lee L P, Szema R. Inspirations from biological optics for advanced photonic systems[J]. Science, 2005, 310: 1148-1150.
[3] Weng B, Qiu J, Yuan Z, et al. Responsivity enhancement of mid-infrared PbSe detectors using CaF2 nano-structured antireflective coatings[J]. Appl Phys Lett, 2014, 104: 021109.
[4] Betts D B, Clarke F J J, Cox L J, et al. Infrared reflection properties of five types of black coating for radiometric detectors[J]. J Phys E: Sci Instrum, 1985, 18: 689-696.
[5] Nelms N, Dowson J. Goldblack coating for thermal infrared detectors[J]. Sens Actuator A-Phys, 2005, 120: 403-407.
[6] Corrigan T D, Park D H, Drew H D, et al. Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers[J]. Appl Optics, 2012, 51(8): 1109-1114.
[7] Brown R J C, Brewer P J, Milton M J T. The physical and chemical properties of electroless nickel-phosphorus alloys and low reflectance nickel-phosphorus black surfaces[J]. J Mater Chem, 2002, 12: 2749-2754.
[8] Xi J Q, Schubert M F, Kim J K, et al. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection[J]. Nat Photonics, 2007, 1: 176-179.
[9] Yang Z P, Ci L, Bur J A, et al. Experimental observation of an extremely dark material made by a low-density nanotube array[J]. Nano Lett, 2008, 8(2): 446-451.
[10] Mizuno K, Ishii J, Kishida H, et al. A black body absorber from vertically aligned single-walled carbon nanotubes[J]. PNAS, 2009, 106(15): 6044-6047.
[11] Wu C, Crouch C H, Zhao L, et al. Near-unity below-band-gap absorption by microstructured silicon[J]. Appl Phys Lett, 2001, 78(13): 1850-1852.
[12] Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Appl Phys Lett, 1998, 73(12): 1673-1675.
[13] Huang Y F, Chattopadhyay S, Jen Y J, et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures[J]. Nat Nanotechnol, 2007, 2: 770-774.
[14] Song Y M, Bae S Y, Yu J S, et al. Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer[J]. Opt Lett, 2009, 34(11): 1702-1704.
[15] Chiu C H, Yu P, Kuo H C, et al. Broadband and omnidirectional antireflection employing disordered GaN nanopillars[J]. Opt Express, 2008, 16(12): 8748-8754.
[16] Teperik T V, Garca de Abajo F J, Borisov A G. Omnidirectional absorption in nanostructured metal surfaces[J]. Nat Photonics, 2008, 2: 299-301.
[17] Aydin K, Ferry V E, Briggs R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nat Commun, 2011, 2: 517.
[18] Tang G, Hourd A C, Abdolvand A. Nanosecond pulsed laser blackening of copper[J]. Appl Phys Lett, 2012, 101: 231902.
[19] Vorobyev A Y, Guo C. Femtosecond laser blackening of platinum[J]. J Appl Phys, 2008, 104: 053516.
[20] Vorobyev A Y, Topkov A N, Gurin O V, et al. Enhanced absorption of metals over ultrabroad electromagnetic spectrum[J]. Appl Phys Lett, 2009, 95: 121106.
[21] Fan P X, Zhong M L, Li L, et al. Sequential color change on copper surfaces via micro/nano structure modification induced by a picosecond laser[J]. J Appl Phys, 2013, 114: 083518.
[22] Fan P X, Zhong M L, Li L, et al. Angle-independent colorization of copper surfaces by simultaneous generation of picosecond-laser-induced nanostructures and redeposited nanoparticles[J]. J Appl Phys, 2014, 115: 124302.
[23] Fan P X, Zhong M L, Lin C, et al. Sequential colorization of steel surface by ps laser texturing[C]//32nd International Congress on Applications of Lasers and Electro-Optics, ICALEO, 2013: 700-705.
[24] Long J Y, Fan P X, Zhong M L, et al. Superhydrophobic and colorful copper surfaces fabricated bypicosecond laser induced periodic nanostructures[J]. Appl Surf Sci, 2014, 311: 461-467.
[25] Fan P X, Zhong M L, Bai B F, et al. Tuning the optical reflection property of metal surfaces viamicro-nano particle structures fabricated by ultrafast laser[J]. Appl Surf Sci, 2015, 359: 7-13.
[26] Fan P X, Zhong M L, Li L, et al. Rapid fabrication of surface micro/nano structures with enhanced broadband absorption on Cu by picosecond laser[J]. Opt Express, 2013, 21(10): 11628-11637.
[27] Fan P X, Long J Y, Jiang D F, et al. Study on ultrafast laser fabrication of UV-FIR ultra-broad-band antireflection surface micro-nano structures and their properties[J]. Chinese J Lasers, 2015, 42(8): 0806005. (in Chinese)
[28] Fan P X, Bai B F, Long J Y, et al. Broadband high-performance infrared antireflection nanowires facilely grown on ultrafast laser structured Cu surface[J]. Nano Lett, 2015, 15: 5988-5994.
[29] Gong D W, Long J Y, Fan P X, et al. Thermal stability of micro-nano structures and superhydrophobicity of polytetrafluoroethylene films formed by hot embossing via apicosecond laser ablated template[J]. Appl Surf Sci, 2015, 331: 437-443.
[30] Lin C, Zhong M L, Fan P X, et al. Picosecond laser fabrication of large-area surface micro-nano lotus-leaf structures and replication of superhydrophobic silicone rubber surfaces[J]. Chinese J Lasers, 2014, 41(9): 0903007. (in Chinese)