[1] Nilsson O. Fundamental limits and possibilities for the future telecommunication[J]. IEEE Communications Magazine, 2001, 39(5):164-167.
[2] Chan V W S. Optical space communications[J]. IEEE J Quantum Electron, 2002, 6(6):959-975.
[3] He Aga. Research on the contact interface temperature field of optical-mechanical systems space laser communication terminal[D]. Harbin:Haerbin Institute of Technology, 2008. (in Chinese)何阿呷. 卫星光通信终端中光机系统接触界面温度场研究[D]. 哈尔滨:哈尔滨工业大学, 2008.
[4] Li Xiaofeng. Finite element analysis of mirror thermal distortion within the sun shadow in space-to-ground laser communication links[J]. Journal of OptoelectronicsLaser, 2006, 17(2):183-186. (in Chinese)李晓峰. 空地激光通信星载光学天线在太阳阴影区的镜面热变形有限元分析[J]. 光电子激光, 2006, 17(2):183-186.
[5] Li Xiaofeng, Wang Bo, Hu Yu. Influence of mirror thermal distortion in thermosphere to space-to-groand laser communication links[J]. Journal of Astronautics, 2005, 26(5):581-585. (in Chinese)李晓峰, 汪波, 胡渝. 在轨运行热环境下的天线镜面热变形对空地激光通信链路的影响[J]. 宇航学报, 2005, 26(5):581-585.
[6] Song Yiwei, Yu Siyuan, Tan Liying, et al. The effects of temperature distribution in space on the figure of reflectors[J]. Journal of Astronautics, 2010, 31(3):868-874. (in Chinese)宋义伟, 于思源, 谭立英, 等. 空间温度场对平面反射镜面形影响研究[J]. 宇航学报, 2010, 31(3):868-874.
[7] Tan Liying, Song Yiwei, Ma Jing, et al. Effects of temperature distribution on performance of SiC reflectors in periscopic laser communication terminals[J]. High Power Laser and Particie Beams, 2010, 22(11):2545-2550. (in Chinese)谭立英, 宋义伟, 马晶, 等. 温度对潜望式激光通信终端SiC反射镜性能影响[J]. 强激光与粒子束, 2010, 22(11):2545-2550.
[8] Meng Henghui, Geng Liyin, Li Guoqiang. Thermal control design and experiment for laser communication equipment[J]. Infrared and Laser Engineering, 2014, 43(7):2295-2299.(in Chinese)孟恒辉, 耿利寅, 李国强. 激光通信器热设计与热试验[J].红外与激光工程, 2014, 43(7):2295-2299.