[1] Dirac P A M. Quantised singularities in the electromagnetic field [J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1931, 133(821): 60-72.
[2] Nye J F, Berry M V. Dislocations in wave trains [J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1974, 336(1605): 165-190
[3] Vaughan J M, Willetts D V. Interference properties of a light beam having a helical wave surface [J]. Optics Communications, 1979, 30(3): 263-267. doi:  10.1016/0030-4018(79)90350-X
[4] Berry M V, Nye J F, Wright F J. The elliptic umbilic diffraction catastrophe [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1979, 291(1382): 453-484.
[5] Baranova N B, Zel’Dovich B Y, Mamaev A V, et al. Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment) [J]. Jetp Letters, 1981, 33: 206B.
[6] Coullet P, Gil L, Rocca F. Optical vortices [J]. Optics Communications, 1989, 73(5): 403-408. doi:  10.1016/0030-4018(89)90180-6
[7] Allen L, Beijersbergen M W, Spreeuw R, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Phys Rev A, 1992, 45(11): 8185. doi:  10.1103/PhysRevA.45.8185
[8] Heckenberg N R, Mcduff R, Smith C P, et al. Generation of optical phase singularities by computer-generated holograms [J]. Optics Letters, 1992, 17(3): 221. doi:  10.1364/OL.17.000221
[9] Bekshaev A, Orlinska O, Vasnetsov M. Optical vortex generation with a "fork" hologram under conditions of high-angle diffraction [J]. Optics Communications, 2010, 283(10): 2006-2016. doi:  10.1016/j.optcom.2010.01.012
[10] Bekshaev A Y, Sviridova S V, Popov A Y, et al. Generation of optical vortex light beams by volume holograms with embedded phase singularity [J]. Optics Communications, 2012, 285(20): 4005-4014. doi:  10.1016/j.optcom.2012.06.010
[11] Lin Y C, Lu T H, Huang K F, et al. Generation of optical vortex array with transformation of standing-wave laguerre-gaussian mode [J]. Optics Express, 2011, 19(11): 10293-10303. doi:  10.1364/OE.19.010293
[12] Chu S C, Ohtomo T, Otsuka K. Generation of doughnutlike vortex beam with tunable orbital angular momentum from lasers with controlled hermite-gaussian modes [J]. Applied Optics, 2008, 47(14): 2583-2591. doi:  10.1364/AO.47.002583
[13] Chu S C, Otsuka K. Doughnut-like beam generation of laguerre-gaussian mode with extremely high mode purity [J]. Optics Communications, 2008, 281(6): 1647-1653. doi:  10.1016/j.optcom.2007.11.023
[14] Beijersbergen M W, Coerwinkel R, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate [J]. Optics Communications, 1994, 112(5-6): 321-327. doi:  10.1016/0030-4018(94)90638-6
[15] Kotlyar V V, Almazov A A, Khonina S N, et al. Generation of phase singularity through diffracting a plane or gaussian beam by a spiral phase plate [J]. Journal of the Optical Society of America A Optics Image Science & Vision, 2005, 22(5): 849-861.
[16] Turnbull G A, Robertson D A, Smith G M, et al. The generation of free-space laguerre-gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate [J]. Optics Communications, 1996, 127(4-6): 183-188.
[17] Walde M, Jost A, Wicker K, et al. Engineering an achromatic Bessel beam using a phase-only spatial light modulator and an iterative Fourier transformation algorithm [J]. Optics Communications, 2017, 383: 64-68. doi:  10.1016/j.optcom.2016.08.050
[18] Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator [J]. Optics Letters, 2013, 38(4): 534-536. doi:  10.1364/OL.38.000534
[19] Yuan G, Wang Q, Yuan X. Dynamic generation of plasmonic Moiré fringes using phase-engineered optical vortex beam [J]. Optics Letters, 2012, 37(13): 2715-2717.
[20] Abramochkin E, Losevsky N, Volostnikov V. Generation of spiral-type laser beams [J]. Optics Communications, 1997, 141(1-2): 59-64. doi:  10.1016/S0030-4018(97)00215-0
[21] Oron R, Blit S, Davidson N, et al. The formation of laser beams with pure azimuthal or radial polarization [J]. Appl Phys Lett, 2000, 77(21): 3322-3324. doi:  10.1063/1.1327271
[22] Oron R, Davidson N, Friesem A A, et al. Efficient formation of pure helical laser beams [J]. Optics Communications, 2000, 182(1-3): 205-208. doi:  10.1016/S0030-4018(00)00804-X
[23] Litvin I A, Ngcobo S, Naidoo D, et al. Doughnut laser beam as an incoherent superposition of two petal beams [J]. Opt Lett, 2014, 39(3): 704-707. doi:  10.1364/OL.39.000704
[24] Wright E M, Arlt J, Dholakia K. Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams [J]. Physical Review A, 2000, 63(1): 013608.
[25] Zhang D W, Yuan X C. Optical doughnut for optical tweezers [J]. Opt Lett, 2003, 28: 740-742. doi:  10.1364/OL.28.000740
[26] Vetter C, Steinkopf R, Bergner K, et al. Realization of free-space long-distance self-healing bessel beams [J]. Laser & Photonics Reviews, 2019: 1900103.
[27] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing [J]. Nature Photonics, 2012, 6(7): 488-496. doi:  10.1038/nphoton.2012.138
[28] Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers [J]. Science, 2013, 340(6140): 1545-1548. doi:  10.1126/science.1237861
[29] Gao Chunqing, Zhang Shikun, Fu Shiyao, et al. Adaptive optics wavefront correction techniques of vortex beams [J]. Infrared and Laser Engineering, 2017, 46(2): 0201001. (in Chinese) doi:  10.3788/IRLA201746.0201001
[30] Ke Xizheng, Ning Chuan, Wang Jiao. Crosstalk analysis of orbital angular momentum-multiplexed state under atmospheric turbulence [J]. Infrared and Laser Engineering, 2018, 47(11): 1122002. (in Chinese) doi:  10.3788/IRLA201847.1122002
[31] Westphal V, Hell S W. Nanoscale resolution in the focal plane of an optical microscope [J]. Physical Review Letters, 2005, 94(14): 143903. doi:  10.1103/PhysRevLett.94.143903
[32] Maurer C, Jesacher A, Fürhapter S, et al. Upgrading a microscope with a spiral phase plate [J]. Journal of Microscopy, 2010, 230(1): 134-142.
[33] Levenson  M  D,  Morikawa  Y,  Hayashi  N,  et  al.  Vortex  viaprocess:  analysis  and  mask  fabrication  for  contact  CDs <80 nm [C]//SPIE, 2003, 5040: 344-370.
[34] Dutra S M, Eliel E R, Nienhuis G, et al. Comment on "orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion" [J]. Physical Review Letters, 2001, 86(22): 5208-5216. doi:  10.1103/PhysRevLett.86.5208
[35] Mair A, Vaziri Al, Weihs G, et al. Entanglement of the orbital angular momentum states of photons [J]. Nature, 2001, 412(6844): 313-316.
[36] Maleev I D, Marathay A S, Swartzlander G A, et al. Spatial correlation singularity of a vortex field [J]. Physical Review Letters, 2004, 92(14): 143905. doi:  10.1103/PhysRevLett.92.143905
[37] Wei Gongxiang, Liu Xiaojuan, Liu Yunyan, et al. Spin and orbital angular momentum of light [J]. Laser & Optoelectronics Progress, 2014, 51(10): 30-37. (in Chinese)
[38] Gbur G, Visser T D. Coherence vortices in partially coherent beams [J]. Optics Communications, 2003, 222(1-6): 117-125. doi:  10.1016/S0030-4018(03)01606-7
[39] Schouten H F, Gbur G, Visser T D, et al. Phase singularities of the coherence functions in Young's interference pattern [J]. Optics Letters, 2003, 28(12): 968-970. doi:  10.1364/OL.28.000968
[40] Nes A, Trk P. Rigorous analysis of spheres in gauss-laguerre beams [J]. Optics Express, 2007, 15(20): 13360. doi:  10.1364/OE.15.013360
[41] Zambrana-Puyalto X, Vidal X, Molina-Terriza G. Excitation of single multipolar modes with engineered cylindrically symmetric fields [J]. Optics Express, 2012, 20(22): 24536-24544. doi:  10.1364/OE.20.024536
[42] Rury A S, Freeling R. Mie scattering of purely azimuthal laguerre-gauss beams: angular-momentum-induced transparency [J]. Physical Review A, 2012, 86(5): 11781.
[43] Kiselev A D, Plutenko D O. Mie scattering of laguerre-gaussian beams: photonic nanojets and near-field optical vortices [J]. Physical Review A, 2014, 89(4): 043803. doi:  10.1103/PhysRevA.89.043803
[44] Sun Wenbo, Hu Yongxiang, Weimer C, et al. A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: far-field characteristics [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 188: 200-213.
[45] Ou Jun, Jiang Yuesong, Shao Yuwei, et al. Scattering of the Laguerre-Gaussian beam by a homogeneous spheroid [J]. Acta Physica Sinica, 2013(11): 241-248. (in Chinese)
[46] Palacios D, Rozas D, Swartzlander G A. Observed scattering into a dark optical vortex core [J]. Phys Rev Lett, 2002, 88(10): 103902-103904. doi:  10.1103/PhysRevLett.88.103902
[47] Swartzlander G. Peering into darkness with a vortex spatial filter [J]. Optics Letters, 2001, 26(8): 497-505. doi:  10.1364/OL.26.000497
[48] Foo G, Palacios D, Swartzlander G. Optical vortex coronagraph [J]. Opt Lett, 2005, 30(24): 3308-3310. doi:  10.1364/OL.30.003308
[49] Swartzlander G, Ford E, Abdul-Malik R, et al. Astronomical demonstration of an optical vortex coronagraph [J]. Opt Express, 2008, 16(14): 10200-10207. doi:  10.1364/OE.16.010200
[50] Lee J H, Foo G, Johnson E G, et al. Experimental verification of an optical vortex coronagraph [J]. Physical Review Letters, 2006, 97: 053901.
[51] Cochenour B, Morgan K, Miller K, et al. Propagation of modulated optical beams carrying orbital angular momentum in turbid water [J]. Appl Opt, 2016, 55(31): C34. doi:  10.1364/AO.55.000C34
[52] Wang W B, Gozali R, Shi L, et al. Deep transmission of Laguerre–Gaussian vortex beams through turbid scattering media [J]. Opt Lett, 2016, 41(9): 2069-2072. doi:  10.1364/OL.41.002069
[53] Wang  W  B,  Gozali  R,  Nguyen  T  A,  et  al.  Propagation  and transmission of optical vortex beams through turbid scatteringwall  with  orbital  angular  momentums [C]//Conference onOptical Biopsy XIII, International Society for Optics andPhotonics, 2015: 931805.
[54] Morgan K S, Johnson E G, Cochenour B M. Attenuation of beams with orbital angular momentum for underwater communication systems [C]//Oceans, IEEE, 2016: 1-3.
[55] Jantzi A W, Cockrell M G, Rumbaugh L K, et al. Mixed numerical and analytical method for investigating orbital angular momentum beam scattering in turbid water [J]. Optical Engineering, 2019, 58(4): 043104.
[56] Peng Bo, Zhong Kun, Li Zhongyun. Influence of topological charge on turbid underwater propagation of Laguerre-Gaussian vortex beams [J]. Acta Optica Sinica, 2017, 37(6): 0601005. (in Chinese)
[57] Sun Cunzhi, Chen Ziyang, Pu Jixiong. Experimental study of tightly focused vortex beams through turbid media [J]. Acta Optica Sinica, 2014, 34(6): 0601002. (in Chinese)
[58] Gangireddy S, Prabhakar S, Kumar A, et al. Higher order optical vortices and formation of speckles [J]. Optics Letters, 2014, 39(15): 4364-4367.
[59] Liu Jilin, Huang Huiling, Chen Ziyang, et al. Investigation on the speckle produced by vortex beams through a scattering medium [J]. Journal of Optoelectronics · Laser, 2015, 26(8): 1626-1632. (in Chinese)
[60] Reddy S G, Kumar A, Prabhakar S, et al. Experimental generation of ring-shaped beams with random sources [J]. Optics Letters, 2013, 38(21): 4441-4444. doi:  10.1364/OL.38.004441
[61] Gilead Y, Silberberg Y. Effect of second-order coupling on photon-pair statistics in waveguide structures [J]. Phys Rev A, 2017, 96(5): 053803. doi:  10.1103/PhysRevA.96.053803
[62] Chan K W C, O’Sullivan M N, Boyd R W. Optimization of thermal ghost imaging: high-order correlations vs background subtraction [J]. Optics Express, 2010, 18(6): 5562-5573.
[63] Sun W, Hu Y, MacDonnell D G, et al. Technique to separate lidar signal and sunlight [J]. Optics Express, 2016, 24(12): 12949.
[64] Cochenour B, Rodgers L, Laux A, et al. The detection of objectsin a turbid underwater medium using orbital angular momentum(OAM) [C]//SPIE, 2017, 10186: 1018603.
[65] Jantzi A, Jemison W, Laux A, et al. Enhanced underwater ranging using an optical vortex [J]. Optics Express, 2018, 26(3): 2668-2674.