[1] 张晓杰, 刘莎, 刘翔. 基于偏振信息融合的背景抑制方法评价[J]. 上海航天, 2019, 36(1): 23-28.

Zhang Xiaojie, Liu Sha, Liu Xiang. Evaluation of background suppression method based on polarization fusion [J]. Aerospace Shanghai, 2019, 36(1): 23-28. (in Chinese)
[2] 鲍富成, 段锦, 董锁芹, 等. 水下目标物偏振成像特性研究[J]. 应用光学, 2019, 40(1): 27-32.

Bao Fucheng, Duan Jin, Dong Suoqin, et al. Experimental study on polarization imaging characteristics of underwater targets [J]. Journal of Applied Optics, 2019, 40(1): 27-32. (in Chinese)
[3] Felton M, Gurton K P, Pezzaniti J L, et al. Measured comparison of the crossover periods for mid- and long-wave IR (MWIR and LWIR) polarimetric and conventional thermal imagery [J]. Optics Express, 2010, 18(15): 15704-15713. doi:  10.1364/OE.18.015704
[4] Tyo J Scott, Goldstein D L, Chenault D B, et al. Review of passive imaging polarimetry for remote sensing applications [J]. Applied Optics, 2006, 45(22): 5453-5469. doi:  10.1364/AO.45.005453
[5] 岳桢干. 美国陆军研究实验室正在研发军用热红外偏振成像技术[J]. 红外, 2019, 40(4): 39-41. doi:  10.3969/j.issn.1672-8785.2019.04.007

Yue Zhengan. U.S. Army Research Laboratory is developing military thermal infrared polarization imaging technology [J]. Infrared, 2019, 40(4): 39-41. (in Chinese) doi:  10.3969/j.issn.1672-8785.2019.04.007
[6] 王霞, 梁建安, 龙华宝, 等. 典型背景和目标的长波红外偏振成像实验研究[J]. 红外与激光工程, 2016, 45(7): 0704002. doi:  10.3788/irla201645.0704002

Wang Xia, Liang Jian'an, Long Huabao, et al. Experimental study on long wave infrared polarization imaging of typical background and objectives [J]. Infrared and Laser Engineering, 2016, 45(7): 0704002. (in Chinese) doi:  10.3788/irla201645.0704002
[7] 王海峰, 胡奇琪, 段佳著. 小型机载偏振成像系统研制及应用研究[J]. 光电工程, 2017, 44(11): 1075-1082. doi:  10.3969/j.issn.1003-501X.2017.11.006

Wang Haifeng, Hu Qiqi, Duan Jiazhu. Development and applications of small airborne polarization imaging system [J]. Opto-Electronic Engineering, 2017, 44(11): 1075-1082. (in Chinese) doi:  10.3969/j.issn.1003-501X.2017.11.006
[8] 王琪, 梁静秋, 梁中翥, 等. 分孔径红外偏振成像仪光学系统设计[J]. 中国光学, 2018, 11(1): 92-99. doi:  10.3788/co.20181101.0092

Wang Qi, Liang Jingqiu, Liang Zhongzhu, et al. Design of decentered aperture-divided optical system of infrared polarization imager [J]. Chinese Optics, 2018, 11(1): 92-99. (in Chinese) doi:  10.3788/co.20181101.0092
[9] 张哲. 长波红外偏振成像及实验研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2019.

Zhang Zhe. Long-wave infrared polarization imaging and experimental study[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019. (in Chinese)
[10] 赵永强, 马位民, 李磊磊. 红外偏振成像进展[J]. 飞控与探测, 2019, 2(3): 77-84.

Zhao Yongqiang, Ma Weimin, Li Leilei. Progress of infrared polarimetric imaging detection [J]. Flight Control & Detection, 2019, 2(3): 77-84. (in Chinese)
[11] 黄飞. 红外偏振探测关键技术研究[D]. 上海: 中国科学院上海技术物理研究所, 2018.

Huang Fei. Research on key technologies of infrared polarization detection[D]. Shanghai: Shanghai Institute of Technical Physical, Chinese Academy of Sciences, 2018. (in Chinese)
[12] 张家民, 时东锋, 黄见, 等. 图像融合在偏振关联成像中的应用[J]. 红外与激光工程, 2018, 47(12): 1226002. doi:  10.3788/IRLA201847.1226002

Zhang Jiamin, Shi Dongfeng, Huang Jian, et al. Application of image fusion in polarization correlated imaging [J]. Infrared and Laser Engineering, 2018, 47(12): 1226002. (in Chinese) doi:  10.3788/IRLA201847.1226002
[13] 贾国伟, 俞小峰, 洪普. 一种红外偏振成像中的冷反射去化方法[J]. 光学与光电技术, 2018, 16(5): 48-54.

Jia Guowei, Yu Xiaofeng, Hong Pu. A method of eliminating cold reflection in infrared polarization imaging [J]. Optics & Optoelectronic Technology, 2018, 16(5): 48-54. (in Chinese)
[14] 马岩, 张超子, 刘也, 等. 采用双三次插值的空间目标偏振成像[J]. 光学 精密工程, 2019, 27(12): 2555-2563. doi:  10.3788/OPE.20192712.2555

Ma Yan, Zhang Chaozi, Liu Ye, et al. Polarization imaging of space target based on bicubic interpolation [J]. Optics and Precision Engineering, 2019, 27(12): 2555-2563. (in Chinese) doi:  10.3788/OPE.20192712.2555
[15] 王霞, 夏润秋, 金伟其, 等. 红外偏振成像探测技术进展[J]. 红外与激光工程, 2014, 43(10): 3175-3182. doi:  10.3969/j.issn.1007-2276.2014.10.001

Wang Xia, Xia Runqiu, Jin Weiqi, et al. Technology progress of infrared polarization imaging detection [J]. Infrared and Laser Engineering, 2014, 43(10): 3175-3182. (in Chinese) doi:  10.3969/j.issn.1007-2276.2014.10.001