[1] Chen F, Brown G M, Song M. Overview of three-dimensional shape measurement using optical methods [J]. Optical Engineering, 2000, 39(1): 10−22. doi:  10.1117/1.602438
[2] Tutsch R, Petz M, Fischer M. Optical three-dimensional metrology with structured illumination [J]. Optical Engineering, 2011, 50(10): 101507. doi:  10.1117/1.3578448
[3] Sansoni G, Trebeschi M, Docchio F. State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation [J]. Sensors, 2009, 9(1): 568−601. doi:  10.3390/s90100568
[4] Geng J. Structured-light 3D surface imaging: A tutorial [J]. Advances in Optics and Photonics, 2011, 3(2): 128−160. doi:  10.1364/AOP.3.000128
[5] Peng X, Tian J, Zhang P, et al. Three-dimensional vision with dual acousto-optic deflection encoding [J]. Optics Letters, 2005, 30(15): 1965−1967. doi:  10.1364/OL.30.001965
[6] Guan Y, Yin Y, Li A, et al. Dynamic 3D imaging based on acousto-optic heterodyne fringe interferometry [J]. Optics Letters, 2014, 39(12): 3678−3681. doi:  10.1364/OL.39.003678
[7] Zhang J, Zhou C, Wang X. Three-dimensional profilometry using a dammann grating [J]. Applied Optics, 2009, 48(19): 3709−3715. doi:  10.1364/AO.48.003709
[8] Miao Y, Zhao Y, Ma H, et al. Design of diffractive optical element projector for a pseudorandom dot array by an improved encoding method [J]. Applied Optics, 2019, 58(34): G169−G176. doi:  10.1364/AO.58.00G169
[9] Iwata K, Sando Y, Satoh K, et al. Application of generalized grating imaging to pattern projection in three-dimensional profilometry [J]. Applied Optics, 2011, 50(26): 5115−5121. doi:  10.1364/AO.50.005115
[10] Fujigaki M, Oura Y, Asai D, et al. High-speed height measurement by a light-source-stepping method using a linear led array [J]. Optics Express, 2013, 21(20): 23169−23180. doi:  10.1364/OE.21.023169
[11] Heist S, Dietrich P, Landmann M, et al. GOBO projection for 3D measurements at highest frame rates: A performance analysis [J]. Light: Science & Applications, 2018, 7(1): 71.
[12] Hyun J-S, Chiu G T C, Zhang S. High-speed and high-accuracy 3D surface measurement using a mechanical projector [J]. Optics Express, 2018, 26(2): 1474−1487. doi:  10.1364/OE.26.001474
[13] Sitnik R, Kujawinska M, Woznicki J. Digital fringe projection system for large-volume 360-deg shape measurement [J]. Optical Engineering, 2002, 41(2): 443−449. doi:  10.1117/1.1430422
[14] Zhang S, Yau S-T. Three-dimensional shape measurement using a structured light system with dual cameras [J]. Optical Engineering, 2008, 47(1): 013604. doi:  10.1117/1.2835686
[15] Guo W, Wu Z, Xu R, et al. A fast reconstruction method for three-dimensional shape measurement using dual-frequency grating projection and phase-to-height lookup table [J]. Optics & Laser Technology, 2019, 112: 269−277.
[16] Salvi J, Fernandez S, Pribanic T, et al. A state of the art in structured light patterns for surface profilometry [J]. Pattern Recognition, 2010, 43(8): 2666−2680. doi:  10.1016/j.patcog.2010.03.004
[17] Gorthi S S, Rastogi P. Fringe projection techniques: Whither we are? [J]. Optics and Lasers in Engineering, 2010, 48(2): 133−140. doi:  10.1016/j.optlaseng.2009.09.001
[18] Su X, Chen W. Fourier transform profilometry: A review [J]. Optics and Lasers in Engineering, 2001, 35(5): 263−284. doi:  10.1016/S0143-8166(01)00023-9
[19] Zhang Z H. Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques [J]. Optics and Lasers in Engineering, 2012, 50(8): 1097−1106. doi:  10.1016/j.optlaseng.2012.01.007
[20] Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes [J]. Applied Optics, 1983, 22(24): 3977−3982. doi:  10.1364/AO.22.003977
[21] Srinivasan V, Liu H C, Halioua M. Automated phase-measuring profilometry of 3-D diffuse objects [J]. Applied Optics, 1984, 23(18): 3105−3108. doi:  10.1364/AO.23.003105
[22] Zuo C, Feng S, Huang L, et al. Phase shifting algorithms for fringe projection profilometry: A review [J]. Optics and Lasers in Engineering, 2018, 109: 23−59. doi:  10.1016/j.optlaseng.2018.04.019
[23] Su X, Chen W. Reliability-guided phase unwrapping algorithm: A review [J]. Optics and Lasers in Engineering, 2004, 42(3): 245−261. doi:  10.1016/j.optlaseng.2003.11.002
[24] Zuo C, Huang L, Zhang M, et al. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review [J]. Optics and Lasers in Engineering, 2016, 85: 84−103. doi:  10.1016/j.optlaseng.2016.04.022
[25] Quan C, Tay C J, Huang Y H. 3-D deformation measurement using fringe projection and digital image correlation [J]. Optik, 2004, 115(4): 164−168. doi:  10.1016/S0030-4026(08)70004-4
[26] Mao X, Chen W, Su X. Improved fourier-transform profilometry [J]. Applied Optics, 2007, 46(5): 664−668. doi:  10.1364/AO.46.000664
[27] Tavares P J, Vaz M A. Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry [J]. Optics Communications, 2007, 274(2): 307−314. doi:  10.1016/j.optcom.2007.02.038
[28] Zhang Z, Towers C E, Towers D P. Uneven fringe projection for efficient calibration in high-resolution 3D shape metrology [J]. Applied Optics, 2007, 46(24): 6113−6119. doi:  10.1364/AO.46.006113
[29] Zhang Z, Ma H, Zhang S, et al. Simple calibration of a phase-based 3D imaging system based on uneven fringe projection [J]. Optics Letters, 2011, 36(5): 627−629. doi:  10.1364/OL.36.000627
[30] Yu C, Peng Q. A unified-calibration method in ftp-based 3D data acquisition for reverse engineering [J]. Optics and Lasers in Engineering, 2007, 45(3): 396−404. doi:  10.1016/j.optlaseng.2006.07.001
[31] Chen L, Quan C. Fringe projection profilometry with nonparallel illumination: A least-squares approach [J]. Optics Letters, 2005, 30(16): 2101−2103. doi:  10.1364/OL.30.002101
[32] Wang Z, Du H, Bi H. Out-of-plane shape determination in generalized fringe projection profilometry [J]. Optics Express, 2006, 14(25): 12122−12133. doi:  10.1364/OE.14.012122
[33] Gonzalez A, Meneses J. Accurate calibration method for a fringe projection system by projecting an adaptive fringe pattern [J]. Applied Optics, 2019, 58(17): 4610−4615. doi:  10.1364/AO.58.004610
[34] Lu P, Sun C, Liu B, et al. Accurate and robust calibration method based on pattern geometric constraints for fringe projection profilometry [J]. Applied Optics, 2017, 56(4): 784−794. doi:  10.1364/AO.56.000784
[35] Du H, Wang Z. Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system [J]. Optics Letters, 2007, 32(16): 2438−2440. doi:  10.1364/OL.32.002438
[36] Huang L, Chua PS, Asundi A. Least-squares calibration method for fringe projection profilometry considering camera lens distortion [J]. Applied Optics, 2010, 49(9): 1539−1548. doi:  10.1364/AO.49.001539
[37] Xiao Y, Cao Y, Wu Y. Improved algorithm for phase-to-height mapping in phase measuring profilometry [J]. Applied Optics, 2012, 51(8): 1149−1155. doi:  10.1364/AO.51.001149
[38] Fu Y, Wang Y, Wang W, et al. Least-squares calibration method for fringe projection profilometry with some practical considerations [J]. Optik, 2013, 124(19): 4041−4045. doi:  10.1016/j.ijleo.2012.12.041
[39] Lu J, Mo R, Sun H, et al. Flexible calibration of phase-to-height conversion in fringe projection profilometry [J]. Applied Optics, 2016, 55(23): 6381−6388. doi:  10.1364/AO.55.006381
[40] Hu Y, Chen Q, Tao T, et al. Absolute three-dimensional micro surface profile measurement based on a greenough-type stereomicroscope [J]. Measurement Science and Technology, 2017, 28(4): 045004. doi:  10.1088/1361-6501/aa5a2d
[41] Asundi A, Wensen Z. Unified calibration technique and its applications in optical triangular profilometry [J]. Applied Optics, 1999, 38(16): 3556−3561. doi:  10.1364/AO.38.003556
[42] Liu H, Su W-H, Reichard K, et al. Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement [J]. Optics Communications, 2003, 216(1-3): 65−80. doi:  10.1016/S0030-4018(02)02290-3
[43] Guo H, He H, Yu Y, et al. Least-squares calibration method for fringe projection profilometry [J]. Optical Engineering, 2005, 44(3): 033603. doi:  10.1117/1.1871832
[44] Su W-H, Liu H. Calibration-based two-frequency projected fringe profilometry: A robust, accurate, and single-shot measurement for objects with large depth discontinuities [J]. Optics Express, 2006, 14(20): 9178−9187. doi:  10.1364/OE.14.009178
[45] Wen Y, Li S, Cheng H, et al. Universal calculation formula and calibration method in fourier transform profilometry [J]. Applied Optics, 2010, 49(34): 6563−6569. doi:  10.1364/AO.49.006563
[46] Liu K, Wang Y, Lau DL, et al. Dual-frequency pattern scheme for high-speed 3-D shape measurement [J]. Optics Express, 2010, 18(5): 5229−5244. doi:  10.1364/OE.18.005229
[47] Léandry I, Brèque C, Valle V. Calibration of a structured-light projection system: Development to large dimension objects [J]. Optics and Lasers in Engineering, 2012, 50(3): 373−379. doi:  10.1016/j.optlaseng.2011.10.020
[48] Merner L, Wang Y, Zhang S. Accurate calibration for 3D shape measurement system using a binary defocusing technique [J]. Optics and Lasers in Engineering, 2013, 51(5): 514−519. doi:  10.1016/j.optlaseng.2012.10.015
[49] Cai Z, Liu X, Li A, et al. Phase-3D mapping method developed from back-projection stereovision model for fringe projection profilometry [J]. Optics Express, 2017, 25(2): 1262−1277. doi:  10.1364/OE.25.001262
[50] Anchini R, Leo G D, Liguori C, et al. A new calibration procedure for 3-D shape measurement system based on phase-shifting projected fringe profilometry [J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(5): 1291−1298. doi:  10.1109/TIM.2009.2012952
[51] Vo M, Wang Z, Hoang T, et al. Flexible calibration technique for fringe-projection-based three-dimensional imaging [J]. Optics Letters, 2010, 35(19): 3192−3194. doi:  10.1364/OL.35.003192
[52] Wang Z, Nguyen D A, Barnes J C. Some practical considerations in fringe projection profilometry [J]. Optics and Lasers in Engineering, 2010, 48(2): 218−225. doi:  10.1016/j.optlaseng.2009.06.005
[53] Zappa E, Busca G, Sala P. Innovative calibration technique for fringe projection based 3D scanner [J]. Optics and Lasers in Engineering, 2011, 49(3): 331−340. doi:  10.1016/j.optlaseng.2010.10.007
[54] Zhang Z, Ma H, Guo T, et al. Simple, flexible calibration of phase calculation-based three-dimensional imaging system [J]. Optics Letters, 2011, 36(7): 1257−1259. doi:  10.1364/OL.36.001257
[55] Villa J, Araiza M, Alaniz D, et al. Transformation of phase to (x, y, z)-coordinates for the calibration of a fringe projection profilometer [J]. Optics and Lasers in Engineering, 2012, 50(2): 256−261. doi:  10.1016/j.optlaseng.2011.08.005
[56] Vo M, Wang Z, Pan B, et al. Hyper-accurate flexible calibration technique for fringe-projection-based three-dimensional imaging [J]. Optics Express, 2012, 20(15): 16926−16941. doi:  10.1364/OE.20.016926
[57] Xu J, Douet J, Zhao J, et al. A simple calibration method for structured light-based 3D profile measurement [J]. Optics & Laser Technology, 2013, 48: 187−193.
[58] Zhang Z, Huang S, Meng S, et al. A simple, flexible and automatic 3D calibration method for a phase calculation-based fringe projection imaging system [J]. Optics Express, 2013, 21(10): 12218−12227. doi:  10.1364/OE.21.012218
[59] Zuo C, Tao T, Feng S, et al. Micro fourier transform profilometry (μFTP): 3D shape measurement at 10, 000 frames per second [J]. Optics and Lasers in Engineering, 2018, 102: 70−91. doi:  10.1016/j.optlaseng.2017.10.013
[60] Chen C, Yu J, Gao N, et al. High accuracy 3D calibration method of phase calculation-based fringe projection system by using lcd screen considering refraction error [J]. Optics and Lasers in Engineering, 2020, 126: 105870. doi:  10.1016/j.optlaseng.2019.105870
[61] Zhang S, Huang P. Novel method for structured light system calibration [J]. Optical Engineering, 2006, 45(8): 083601. doi:  10.1117/1.2336196
[62] Yin Y, Peng X, Li A, et al. Calibration of fringe projection profilometry with bundle adjustment strategy [J]. Optics Letters, 2012, 37(4): 542−544. doi:  10.1364/OL.37.000542
[63] Hartley R, Zisserman A. Multiple View Geometry In Computer Vision[M]. Cambridge: Cambridge University Press, 2003: 655.
[64] Szeliski R. Computer Vision: Algorithms and Applications[M]. Berlin: Springer, 2010: 812.
[65] Zhang S. High-speed 3D shape measurement with structured light methods: A review [J]. Optics and Lasers in Engineering, 2018, 106: 119−131.
[66] Tian J, Ding Y, Peng X. Self-calibration of a fringe projection system using epipolar constraint [J]. Optics & Laser Technology, 2008, 40(3): 538−544.
[67] Zhang R, Guo H, Asundi A K. Geometric analysis of influence of fringe directions on phase sensitivities in fringe projection profilometry [J]. Applied Optics, 2016, 55(27): 7675−7687. doi:  10.1364/AO.55.007675
[68] Feng S, Zuo C, Yin W, et al. Micro deep learning profilometry for high-speed 3D surface imaging [J]. Optics and Lasers in Engineering, 2019, 121: 416−427. doi:  10.1016/j.optlaseng.2019.04.020
[69] Schreiber W, Notni G. Theory and arrangements of self-calibrating whole-body three-dimensional measurement systems using fringe projection technique [J]. Optical Engineering, 2000, 39(1): 159−169. doi:  10.1117/1.602347
[70] Jiang C, Lim B, Zhang S. Three-dimensional shape measurement using a structured light system with dual projectors [J]. Applied Optics, 2018, 57(14): 3983−3990. doi:  10.1364/AO.57.003983
[71] Reich C, Ritter R, Thesing J. 3-D shape measurement of complex objects by combining photogrammetry and fringe projection [J]. Optical Engineering, 2000, 39(1): 224−231. doi:  10.1117/1.602356
[72] Yin Y, Peng X, Liu X, et al. Calibration strategy of optical measurement network for large-scale and shell-like objects [J]. Optics Communications, 2012, 285(8): 2048−2056. doi:  10.1016/j.optcom.2011.12.100
[73] Zhao H, Liang X, Diao X, et al. Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector [J]. Optics and Lasers in Engineering, 2014, 54: 170−174. doi:  10.1016/j.optlaseng.2013.08.002
[74] Qian J, Feng S, Tao T, et al. High-resolution real-time 360o 3D model reconstruction of a handheld object with fringe projection profilometry [J]. Optics Letters, 2019, 44(23): 5751−5754. doi:  10.1364/OL.44.005751
[75] Gai S, Da F, Tang M. A flexible multi-view calibration and 3D measurement method based on digital fringe projection [J]. Measurement Science and Technology, 2019, 30(2): 025203. doi:  10.1088/1361-6501/aaf5bd
[76] Li D, Liu C, Tian J. Telecentric 3D profilometry based on phase-shifting fringe projection [J]. Optics Express, 2014, 22(26): 31826−31835. doi:  10.1364/OE.22.031826
[77] Li B, Zhang S. Flexible calibration method for microscopic structured light system using telecentric lens [J]. Optics Express, 2015, 23(20): 25795−25803. doi:  10.1364/OE.23.025795
[78] Peng J, Wang M, Deng D, et al. Distortion correction for microscopic fringe projection system with scheimpflug telecentric lens [J]. Applied Optics, 2015, 54(34): 10055−10062. doi:  10.1364/AO.54.010055
[79] Rao L, Da F, Kong W, et al. Flexible calibration method for telecentric fringe projection profilometry systems [J]. Optics Express, 2016, 24(2): 1222−1237. doi:  10.1364/OE.24.001222
[80] Liu H, Lin H, Yao L. Calibration method for projector-camera-based telecentric fringe projection profilometry system [J]. Optics Express, 2017, 25(25): 31492−31508. doi:  10.1364/OE.25.031492
[81] Gu F, Zhao H, Ma Y, et al. Camera calibration based on the back projection process [J]. Measurement Science and Technology, 2015, 26(12): 125004. doi:  10.1088/0957-0233/26/12/125004
[82] Chen L C, Liao C C. Calibration of 3D surface profilometry using digital fringe projection [J]. Measurement Science and Technology, 2005, 16(8): 1554−1566. doi:  10.1088/0957-0233/16/8/003
[83] Zhang X, Lin Y, Zhao M, et al. Calibration of a fringe projection profilometry system using virtual phase calibrating model planes [J]. Journal of Optics A: Pure and Applied Optics, 2005, 7(4): 192−197. doi:  10.1088/1464-4258/7/4/007
[84] Zhang Z. A flexible new technique for camera calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330−1334. doi:  10.1109/34.888718
[85] Legarda-Sáenz R, Bothe T, Jüptner W. Accurate procedure for the calibration of a structured light system [J]. Optical Engineering, 2004, 43(2): 464−471. doi:  10.1117/1.1635373
[86] Gao W, Wang L, Hu Z. Flexible method for structured light system calibration [J]. Optical Engineering, 2008, 47(8): 083602. doi:  10.1117/1.2969118
[87] Li Z, Shi Y, Wang C, et al. Accurate calibration method for a structured light system [J]. Optical Engineering, 2008, 47(5): 053604. doi:  10.1117/1.2931517
[88] Chen X, Xi J, Jin Y, et al. Accurate calibration for a camera–projector measurement system based on structured light projection [J]. Optics and Lasers in Engineering, 2009, 47(3): 310−319.
[89] Huang Z, Xi J, Yu Y, et al. Accurate projector calibration based on a new point-to-point mapping relationship between the camera and projector images [J]. Applied Optics, 2015, 54(3): 347−356. doi:  10.1364/AO.54.000347
[90] Chen R, Xu J, Chen H, et al. Accurate calibration method for camera and projector in fringe patterns measurement system [J]. Applied Optics, 2016, 55(16): 4293−4300. doi:  10.1364/AO.55.004293
[91] Liu X, Cai Z, Yin Y, et al. Calibration of fringe projection profilometry using an inaccurate 2d reference target [J]. Optics and Lasers in Engineering, 2017, 89: 131−137. doi:  10.1016/j.optlaseng.2016.05.025
[92] Huang S, Xie L, Wang Z, et al. Accurate projector calibration method by using an optical coaxial camera [J]. Applied Optics, 2015, 54(4): 789−795. doi:  10.1364/AO.54.000789
[93] Zhang W, Li W, Yu L, et al. Sub-pixel projector calibration method for fringe projection profilometry [J]. Optics Express, 2017, 25(16): 19158−19169. doi:  10.1364/OE.25.019158
[94] Zhao H, Wang Z, Jiang H, et al. Calibration for stereo vision system based on phase matching and bundle adjustment algorithm [J]. Optics and Lasers in Engineering, 2015, 68: 203−213. doi:  10.1016/j.optlaseng.2014.12.001
[95] Triggs B, McLauchlan P F, Hartley R I, et al. Bundle adjustment: A modern synthesis[M]. Bill Triggs, Andrew Zisserman, Richard Szeliski, eds. Vision Algorithms: Theory and Practice. Springer, 2000: 298-372.
[96] Xiao Y L, Xue J, Su X. Robust self-calibration three-dimensional shape measurement in fringe-projection photogrammetry [J]. Optics Letters, 2013, 38(5): 694−696. doi:  10.1364/OL.38.000694
[97] Chen R, Xu J, Zhang S, et al. A self-recalibration method based on scale-invariant registration for structured light measurement systems [J]. Optics and Lasers in Engineering, 2017, 88: 75−81.
[98] Bräuer-Burchardt C, Heinze M, Schmidt I, et al. Underwater 3D surface measurement using fringe projection based scanning devices [J]. Sensors, 2016, 16(1): 13. doi:  10.1109/JSEN.2015.2468082
[99] Zhong K, Li Z, Li R, et al. Pre-calibration-free 3D shape measurement method based on fringe projection [J]. Optics Express, 2016, 24(13): 14196−14207. doi:  10.1364/OE.24.014196
[100] Beraldin J A, Mackinnon D, Cournoyer L. Metrological characterization of 3D imaging systems: Progress report on standards developments [J]. International Congress of Metrology, 2015: 13003.
[101] VDI/VDE Society of Measuring and Automation Techniques. VDI/VDE 2634 part 2: Optical 3D measuring systems - optical systems based on area scanning[S]. Düsseldorf, 2002.