[1] Bharadwaj P, Deutsch B, Novotny L. Optical antennas[J]. Advances in Optics and Photonics, 2009, 1:438-483.
[2] Prodan E, Radloff C, Halas N J, et al. A hybridization model for the plasmon response of complex nanostructures[J]. Science, 2003, 302:419-422.
[3] Halas N J, Lal S, Chang W S, et al. Plasmons in strongly coupled metallic nanostructures[J]. Chemical Review, 2011, 111:3913-3961.
[4] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letter, 2010, 10:2342-2348.
[5] Zhang M Q, Wang R, Zhu Z D, et al. Experimental research on the spectral response of tips for tip-enhanced Raman spectroscopy[J]. Journal of Optics, 2013, 15:055006.
[6] Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser[J]. Nature, 2009, 460:1110-1113.
[7] Yang Shuhan, Kang Yuchen, Wang Yanhong, et al. Simulation research on absorption enhancement characteristics of ultra-high temperature metal nanostructures[J]. Infrared and Laser Engineering, 2016, 45(12):1216001. (in Chinese) 杨舒涵, 康宇晨, 王艳红, 等. 超高温金属纳米结构增强吸收特性的仿真研究[J]. 红外与激光工程, 2016, 45(12):1216001.
[8] Zayats A V, Smolyaninov I I, Maradudin A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 2005, 408:131-314.
[9] Stockman M I. Nanofocusing of optical energy in tapered plasmonic waveguides[J]. Physical Review Letters, 2004, 93:137404.
[10] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85:3966.
[11] Li Yangyu, Fang Yonghua, Li Dacheng, et al. Suppression of grating multiply diffracted light in planar waveguide spectrometer[J]. Infrared and Laser Engineering, 2016, 45(7):0724001. (in Chinese) 李扬裕, 方勇华, 李大成, 等. 平板波导光谱仪中光栅多次衍射杂散光的抑制[J]. 红外与激光工程, 2016, 45(7):0724001.
[12] Okamoto T, H'Dhili F, Kawata S. Towards plasmonic band gap laser[J]. Applied Physics Letters, 2004, 85:3968.
[13] Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation:quantum generation of coherent surface plasmons in nanosystems[J]. Physical Review Letters, 2003, 90:027402.
[14] Li K, Stockman M I, Bergman D J. Self-similar chain of metal nanospheres as an efficient nanolens[J]. Physical Review Letters, 2003, 91:227402.
[15] Stockman M I. Nanoplasmonics:past, present, and glimpse into future[J]. Optics Express, 2011, 19:22029-22106.
[16] Duan Qianqian, Tang Haiquan, Ren Xinyu, et al. Theoretical simulation of the effect of silicon hydrogen bond on waveguide surface smoothing[J]. Infrared and Laser Engineering, 2016, 45(8):0816001. (in Chinese) 段倩倩, 唐海泉, 任馨宇, 等. 硅氢键对波导表面光滑化影响的理论仿真[J]. 红外与激光工程, 2016, 45(8):0816001.
[17] Renger J, Quidant R, Hulst N, et al. Surface-enhanced nonlinear four-wave mixing[J]. Physical Review Letters, 2010, 104:059903.
[18] Hoeppener C, Bharadwaj P, Novotny L. Self-similar gold nanoparticle antennas for a cascaded field enhancement of the optical field[J]. Physical Review Letters, 2012, 109:017402.
[19] Hoeppener C, Beams R. Novotny L. Background suppression in near-field optical imaging[J]. Nano Letter, 2009, 9:903-908.
[20] Bidault S, Abayo F, Polman A. Plasmon-based nanolenses assembled on a well-defined DNA template[J]. Journal of the American Chemical Society, 2008, 130:2750-2751.
[21] Krachmalnicoff V, Castanie E, Wilde Y, et al. Fluctuations of the local density of states probe localized surface plasmons on disordered metal films[J]. Physical Review Letters, 2010, 105:183901.
[22] Bouchet D, Cao D, Carminati R, et al. Long-range plasmon-assisted energy transfer between fluorescent emitters[J]. Physical Review Letters, 2016, 116:037401.
[23] Cao D, Caze A, Calabrese M, et al. Mapping the radiative and the apparent nonradiative local densityof states in the near field of a metallic nanoantenna[J]. ACS Photonics, 2015, 2:189-193.
[24] Stockman M I. A fluctuating fractal nanoworld[J]. Physics, 2010, 3:90.
[25] Zhu Zhendong, Bai Benfeng, You Oubo, et al. Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application[J]. Light:Science Applications, 2015, 4(5):e296.
[26] Zhu Zhendong, Bai Benfeng, Duan H G, et al. M-shaped grating by nanoimprinting:a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps[J]. Small, 2014, 10:1603-1611.
[27] 朱振東,李群慶. ▲ハン▼守善三次元ナノ構造体アレイ及びその製造方法:日本专利,特願2011-249765[P]. 2011-12-8.
[28] Zhu Zhendong, Li Qanqing, Zhang Lihui, et al. Method for making three-dimensional nanostructures array:US, 9261777[P]. 2013-04-11.