[1] 吕朝晨. 高速850 nm垂直腔面发射激光器阵列研究[D]. 北京: 北京理工大学, 2018: 9-19.

Lv Zhaochen. The study of high speed 850nm VCSEL array[D]. Beijing: Beijing University of Technology, 2018: 9-19. (in Chinese)
[2] Yu-Chia Chang, Larry A Coldren, Yu-Chia Chang. Design and Performance of High-Speed VCSELs[M]//VCSELs. Berlin: Springer, 2013.
[3] Philip Moser. Energy efficient oxide confined VCSELs for optical interconnects in data centers and supercomputers[D]. Berlin: Technical University of Berlin, 2015: 40-52.
[4] Peters M G, Thibeault B J, Young D B, et al. Band-gap engineered digital alloy interfaces for lower resistance vertical-cavity surface-emitting lasers [J]. Appl Phys Lett, 1993, 63(25): 3411-3413. doi:  10.1063/1.110156
[5] Lear K L, Schneider R P. Uniparabolic mirror grading for vertical cavity surface emitting lasers [J]. Appl Phys Lett, 1996, 68(5): 605-607. doi:  10.1063/1.116482
[6] Thibeault B J,Bertilsson K,Hegblom E R, et al. High-speed charateristics of low-optical loss oxide-apertured vertical-cavity lasers [J]. IEEE Photonics Technology Letters, 1997, 9(1): 11-13.
[7] Chang Y C, Wang C S, Johansson L A, et al. High-efficiency, high-speed VCSELs with deep oxidation layers [J]. Electron Lett, 2006, 42(22): 1281-1282. doi:  10.1049/el:20062538
[8] Justin L, Siddharth V, Antony T V, et al. Scaling VCSEL-MMF links to 1 Tb/s using short wavelength division multiplexing [J]. J Lightwave Technol, 2018, 36(18): 4138-4145.
[9] Sun L, Wang C, Du J, et al. Dyadic probabilistic shaping of PAM-4 and PAM-8 for cost-effective VCSEL-MMF optical interconnection [J]. IEEE Photonics J, 2019, 11(2): 1-11.
[10] Szczerba K, Westbergh P, Karlsson M, et al. 70 Gbit/s 4-PAM and 56 Gbit/s 8-PAM using an 850 nm VCSEL [J]. J Lightwave Technol, 2015, 33(7): 1395-1401. doi:  10.1109/JLT.2015.2389898
[11] Szczerba K, Karlsson M, Andrekson P, et al. 35.2 Gbit/s 8-PAM transmission over 100 m of MMF using an 850 nm VCSEL[C]//European Conference & Exhibition on Optical Communication, 2013.
[12] Thomas Aggerstam, Rickard M von Wuertemberg, Christine Runnstroem, et al. Large aperture 850 nm oxide-confined VCSELs for 10 Gbit/s data communication[C]//Proc SPIE, 2002, 4649: 19–24.
[13] Westbergh P, Gustavsson J S, Haglund A, et al. 32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL [J]. Electron Lett, 2009, 45(7): 366-368. doi:  10.1049/el.2009.0201
[14] Blokhin S A, Lott J A, Mutig A, et al. Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s [J]. Electron Lett, 2009, 45(10): 501-503. doi:  10.1049/el.2009.0552
[15] Westbergh P, Gustavsson J S, Koegel B, et al. 40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL [J]. Electron Lett, 2010, 46(14): 1014-1016. doi:  10.1049/el.2010.1405
[16] Westbergh P, Safaisini R, Haglund E, et al. High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s [J]. Electron Lett, 2012, 48(18): 1145-1147.
[17] Liu M, Wang C Y, Feng M, et al. 50 Gb/s error-free data transmission of 850 nm oxide-confined VCSELs[C]//Optical Fiber Communication Conference, 2016.
[18] Kuchta D M, Rylyakov A V, Doany F E, et al. 70+Gb/s VCSEL-based multimode fiber links[C]//Compound Semiconductor Integrated Circuit Symposium. IEEE, 2016.
[19] Haglund E, Westbergh P, Gustavsson J S, et al. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s [J]. Electron Lett, 2015, 51(14): 1096-1098. doi:  10.1049/el.2015.0785
[20] Wang H, Qiu J, Yu X, et al. 85°C operation of 850 nm VCSELs deliver a 42 Gbit/s error-free data transmission for 100 meter MMF link[C]//2018 Optical Fiber Communications Conference and Exposition (OFC). IEEE, 2018.
[21] Wu C H, Huang T Y, Qiu J, et al. 50 Gbit/s error-free data transmission using a NRZ-OOK modulated 850 nm VCSEL[C]//2018 European Conference on Optical Communication (ECOC), 2018.
[22] Westbergh P, Haglund E P, Haglund E, et al. High-speed 850 nm VCSELs operating error free up to 57 Gbit/s [J]. Electron Lett, 2013, 49(16): 1021-1022. doi:  10.1049/el.2013.2042
[23] Wun J M, Shi J W, Yan J C, et al. Oxide-relief and Zn-diffusion 850 nm vertical-cavity surface-emitting lasers with extremely small power consumption and large bit rate-distance product for 40 Gbit/sec operations[C]//Optical Fiber Communication Conference & Exposition & the National Fiber Optic Engineers Conference. IEEE, 2013.
[24] Hu S, He X, He Y, et al. Impact of damping on high speed 850 nm VCSEL performance [J]. Journal of Semiconductors, 2018, 39(11): 51-54.
[25] Szczerba Krzysztof, Westbergh Petter, Karout Johnny, et al. 30 Gbit/s 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL.[C]//European Conference and Exhibition on Optical Communication, 2011.
[26] Szczerba K, Westbergh P, Karlsson M, et al. 60 Gbits error-free 4-PAM operation with 850 nm VCSEL [J]. Electron Lett, 2013, 49(15): 953-955. doi:  10.1049/el.2013.1755
[27] Szczerba K, Lengyel T, Karlsson M, et al. 94-Gbit/s 4-PAM using an 850 nm VCSEL, pre-emphasis, and receiver equalization [J]. IEEE Photon Technol Lett, 2016, 22(28): 2519-2521.
[28] Jose M Castro, Rick Pimpinella, Bulent Kose, et al. 48.7 Gbit/s 4-PAM transmission over 200 m of high bandwidth MMF using an 850 nm VCSEL [J]. IEEE Photon Technol Lett, 2015, 27(17): 1799-1801.
[29] Jose Manuel Castro, Rick Pimpinella, Bulent Kose, et al. Investigation of 60 Gbit/s 4-PAM using an 850 nm VCSEL and multimode Fiber [J]. J Lightwave Technol, 2016, 33(16): 3825-3826.
[30] Sun Y, Lingle R, Shubochkin R, et al. 51.56 Gbit/s SWDM PAM4 transmission over next generation wide band multimode optical fiber[C]//Optical Fiber Communication Conference. IEEE, 2016.
[31] Grzegorz Stepniak, Lukasz Chorchos, Mikel Agustin, et al. Up to 108 Gbit/s PAM 850 nm multi and single mode VCSEL transmission over 100 m of multi mode Fiber[C]//Ecoc, European Conference on Optical Communication. VDE, 2016.
[32] Lavrencik J, Varughese S, Gustavsson J S, et al. 100 Gbit/s PAM-4 Transmission over 100 m OM4 and Wideband Fiber using 850 nm VCSELs[C]//Ecoc, European Conference on Optical Communication, 2016.
[33] Hsuan-Yun K, Cheng-Ting T, Shan-Fong L, et al. Single-mode VCSEL for pre-emphasis PAM-4 transmission up to 64 Gbit/s over 100–300 m in OM4 MMF [J]. Photonics Research, 2018, 6(7): 666. doi:  10.1364/PRJ.6.000666
[34] Justin L, Siddharth V, Antony T V, et al. Scaling VCSEL MMF Links to 1 Tb/s using short wavelength division multiplexing [J]. J. Lightwave Technol., 2018, PP: 1-1.
[35] Hecht U, Nikolay Ledentsov, Lukasz Chorchos, et al. 120 Gbit/s multi-mode fiber transmission realized with feed forward equalization using 28 GHz 850 nm VCSELs[C]//45th European Conference on Optical Communication (ECOC 2019). IET, 2019.
[36] Cheng Yi Huang, Huai Yung Wang, Chun Yen Peng, et al. Multimode VCSEL enables 42 GBaud PAM-4 and 35 GBaud 16-QAM OFDM for 100 m OM5 MMF data link [J]. IEEE Access, 2020, 8: 36963-36973.
[37] 杨卓凯, 田思聪, Larish Gunter, 等. 基于PAM4制的高速垂直腔面发射激光器研究进展[J]. 发光学报, 2020, 41(4): 399-413.

Yang Zhuokai, Tian Sicong, Larisch Gunter, et al. High-speed vertical-cavity surface-emitting laser based on PAM4 modulation [J]. Chinese Journal of Luminescence, 2020, 41(4): 399-413. (in Chinese)
[38] Gebrewold S A, Josten A, Baeuerle B, et al. PAM-8 108 Gbit/s transmission using an 850 nm multi-mode VCSEL[C]//Lasers & Electro-optics Europe & European Quantum Electronics Conference. IEEE, 2017.
[39] Sun L, Wang C, Du J, et al. Dyadic probabilistic shaping of PAM-4 and PAM-8 for cost-effective VCSEL-MMF optical interconnection [J]. IEEE Photon J, 2019, 11(2): 1-11.