[1] Hu Xiaoqiang, Zhang Jing. Analysis of the operating range for polarization infrared detection system[J]. Laser Infrared, 2016, 45(6):709-712. (in Chinese)胡晓强, 张晶. 红外偏振探测系统的作用距离分析[J]. 激光与红外, 2016, 45(6):709-712.
[2] Wang Xia, Xia Runqiu, Jin Weiqi, et al. Technology progress of infrared polarization imaging detection[J]. Infrared and Laser Engineering, 2014, 43(10):3175-3182. (in Chinese)王霞, 夏润秋, 金伟其, 等. 红外偏振成像探测技术进展[J]. 红外与激光工程, 2014, 43(10):3175-3182.
[3] Guimaraes Edson F. Investigation of minimum resolvable temperature difference formulation for polarized thermal imaging range prediction[D]. Monterey:Naval Postgraduate School, 1999.
[4] Mehmet Yildirim. Modeling second generation FLIR sensor detection recognition and identification range with polarization filtering[D]. Monterey:Naval Postgraduate School, 2000.
[5] Zhou Chenghao. Moldeling and analysis of operating range of infrared polarization imaging system[D]. Harbin:Harbin Institute of Technology, 2013. (in Chinese)周程灏. 红外偏振成像系统作用距离建模与分析[D]. 哈尔滨:哈尔滨工业大学, 2013.
[6] Zhao Dapeng, Shi Jiaming, Wang Jiachun, et al. Investigation of the operating range for polarized thermal imaging system[J]. Infrared and Laser Engineering, 2013, 42(5):1146-1152. (in Chinese)赵大鹏, 时家明, 汪家春, 等. 偏振热成像系统的作用距离分析[J]. 红外与激光工程, 2013, 42(5):1146-1152.
[7] Xia Runqiu, Wang Xia, Jin Weiqi, et al. Distance model of infrared polarization imaging system used in sea-surface environment[J]. Infrared and Laser Engineering, 2016, 45(3):0304007. (in Chinese)夏润秋, 王霞, 金伟其, 等. 海面环境中红外偏振成像系统作用距离模型[J]. 红外与激光工程, 2016, 45(3):0304007.
[8] Bai Tingzhu, Jin Weiqi. Principle and Technology of Photoelectric Imaging[M]. Beijing:Beijing Institute of Technology Press, 2010. (in Chinese)白廷柱, 金伟其. 光电成像原理与技术[M]. 北京:北京理工大学出版社, 2010.
[9] Schmieder D E, Weathersby M R. Detection performance in clutter with variable resolution[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, 19(4):622-630.
[10] Gerald C Holst. Electro-Optical Imaging System Performance[M]. Washington:SPIE Press, 2008:300-312.