[1] Miura H. Direct laser forming of titanium alloy powders for medical and aerospace applications[J]. Powder Particle, 2015, 32:253-263.
[2] Vrancken B, Humbeeck J V, Cain V, et al. Residual stress via the contour method in compact tension specimens produced via selective laser melting[J]. Scripta Materialia, 2014, 87:29-32.
[3] Wohlers T. Wohlers Report 2015[R]. Fort Collins, CO:Wohlers Associates, Inc, 2015.
[4] Craeghs T. A monitoring system for on-line control of selective laser melting[D]. Belgium:Catholic University of Leuven, 2012.
[5] Yu J, Sohn Y, Park Y W, et al. The development of a quality prediction system for aluminum laser welding to measure plasma intensity using photodiodes[J]. Journal of Mechanical Science Technology, 2016, 30(10):4697-4704.
[6] Gu Zhenjie, Lei Jianbo, Zhang Chuanpeng, et al. Detection and analysis of spectrum distribution of laser molten pool in nickel silicon boron alloy powder laser cladding[J]. Chinese Journal of Lasers, 2014, 41(11):1103009. (in Chinese)顾振杰, 雷剑波, 张传鹏, 等.镍硅硼合金粉末激光熔覆中熔池光谱检测分析[J]. 中国激光, 2014, 41(11):1103009.
[7] Berumen S, Bechmann F, Lindner S, et al. Quality control of laser-and powder bed-based Additive Manufacturing (AM) technologies[J]. Physics Procedia, 2010, 5:617-622.
[8] Craeghs T, Bechmann F, Berumen S, et al. Feedback control of layerwise laser melting using optical sensors[J]. Physics Procedia, 2010, 5:505-514.
[9] Clijsters S, Craeghs T, Buls S, et al. In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system[J]. International Journal of Advanced Manufacturing Technology, 2014, 75(5-8):1089-1101.
[10] Guo Qian, Lan Tian, Zhu Qi, et al. Design and implementation of indoor visible light communication avalanche photodiode detecting circuit[J]. Infrared and Laser Engineering, 2015, 44(2):731-735. (in Chinese)郭倩, 蓝天, 朱祺, 等. 室内可见光通信APD探测电路的设计与实现[J]. 红外与激光工程, 2015, 44(2):731-735.