[1] Pendry J B. Negative refraction makes a perfect lens[J]. Phys Rev Lett, 2000, 85(18):3966-3969.
[2] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77-79.
[3] Zhang S, Fan W, Panoiu N C, et al. Experimental demonstration of near-infrared negative-index metamaterials[J]. Phys Rev Lett, 2005, 95(13):137404.
[4] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721):534-537.
[5] Zhang S, Xiong Y, Bartal G, et al. Magnetized plasma for reconfigurable subdiffraction imaging[J]. Phys Rev Lett, 2011, 106(24):243901.
[6] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781):1780-1782.
[7] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801):977-980.
[8] Li J, Pendry J B. Hiding under the carpet:a new strategy for cloaking[J]. Phys Rev Lett, 2008, 101(20):203901.
[9] Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976):337-339.
[10] Tao H, Landy N I, Bingham C M, et al. A metamaterial absorber for the terahertz regime:design, fabrication and characterization[J]. Opt Express, 2008, 16(10):7181-7188.
[11] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Lett, 2010, 10(7):2342-2348.
[12] Aydin K, Ferry V E, Briggs R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nat Commun, 2011, 2:517.
[13] Feng Q, Pu M, Hu C, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J]. Opt Lett, 2012, 37(11):2133-2135.
[14] Argyropoulos C, Le K Q, Mattiucci N, et al. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces[J]. Phys Rev B, 2013, 87(20):205112.
[15] Kang M, Liu F, Li T F, et al. Polarization-independent coherent perfect absorption by a dipole-like metasurface[J]. Opt Lett, 2013, 38(16):3086-3088.
[16] Yue W, Wang Z, Yang Y, et al. High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing[J]. Plasmonics, 2016, 11(6):1557-1563.
[17] Hu F, Xu N, Wang W, et al. A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array[J]. J Micromech Microeng, 2016, 26(2):025006.
[18] Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials[J]. Phys Rev Lett, 2008, 101(4):047401.
[19] Papasimakis N, Fedotov V A, Zheludev N I, et al. Metamaterial analog of electromagnetically induced transparency[J]. Phys Rev Lett, 2008, 101(25):253903.
[20] Tassin P, Zhang L, Koschny T, et al. Low-loss metamaterials based on classical electromagnetically induced transparency[J]. Phys Rev Lett, 2009, 102(5):053901.
[21] Liu N, Langguth L, Weiss T, et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit[J]. Nat Mater, 2009, 8(9):758-762.
[22] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337.
[23] Aieta F, Genevet P, Yu N, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Lett, 2012, 12(3):1702-1706.
[24] Zhang X, Tian Z, Yue W, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Adv Mater, 2013, 25(33):4567-4572.
[25] Liu L, Zhang X, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Adv Mater, 2014, 26(29):5031-5036.
[26] Radko I P, Volkov V S, Beermann J. et al. Plasmonic metasurfaces for waveguiding and field enhancement[J]. Laser Photon Rev, 2009, 3(6):575-590.
[27] Zhao C, Zhang J. Plasmonic demultiplexer and guiding[J]. ACS Nano, 2010, 4(11):6433-6438.
[28] Tanemura T, Balram K C, Ly-Gagnon D S, et al. Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler[J]. Nano Lett, 2011, 11(7):2693-2698.
[29] Huang L, Chen X, Bai B, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light:Science Application, 2013, 2(3):e70.
[30] Zhao C, Zhang J, Liu Y. Light manipulation with encoded plasmonic nanostructures[J]. EPJ Appl Metamat, 2014, 1:6-12.
[31] Wintz D, Genevet P, Ambrosio A, et al. Holographic metalens for switchable focusing of surface plasmons[J]. Nano Lett, 2015, 15(5):3585-3589.
[32] Liu J, Gao Y, Ran L, et al. Focusing surface plasmon and constructing central symmetry of focal field with linearly polarized light[J]. Appl Phys Lett, 2015, 106(1):013116.
[33] Zou C, Withayachumnankul W, Shadrivov I V, et al. Directional excitation of surface plasmons by dielectric resonators[J]. Phys Rev B, 2015, 91(8):085433.
[34] Zhang X, Xu Y, Yue W, et al. Anomalous surface wave launching by handedness phase control[J]. Adv Mater, 2015, 27(44):7123-7129.
[35] Xu Q, Zhang X, Xu Y, et al. Plasmonic metalens based on coupled resonators for focusing of surface plasmons[J]. Sci Rep, 2016, 6:37861.
[36] Zhou J, Koschny T, Soukoulis C M. Magnetic and electric excitations in split ring resonators[J]. Opt Express, 2007, 15(26):17881-17890.
[37] Singh R, Rockstuhl C, Lederer F, et al. The impact of nearest neighbor interaction on the resonances in terahertz metamaterials[J]. Appl Phys Lett, 2009, 94(2):021116.
[38] Chiam S Y, Singh R, Zhang W, et al. Controlling metamaterial resonances via dielectric and aspect ratio effects[J]. Appl Phys Lett, 2010, 97(19):191906.
[39] Wu P C, Hsu W L, Chen W T, et al. Plasmon coupling in vertical split-ring resonator metamolecules[J]. Sci Rep, 2015, 5:9726.
[40] Manjappa M, Srivastava Y K, Singh R. Lattice-induced transparency in planar metamaterials[J]. Phys Rev B, 2016, 94(16):161103.
[41] Chen C Y, Un I W, Tai N H, et al. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance[J]. Opt Express, 2009, 17(17):15372-15380.
[42] Ma Y, Li Z, Yang Y, et al. Plasmon-induced transparency in twisted Fano terahertz metamaterials[J]. Opt Mater Express, 2011, 1(3):391-399.
[43] Taubert R, Hentschel M, Kstel J, et al. Classical analog of electromagnetically induced absorption in plasmonics[J]. Nano Lett, 2012, 12(3):1367-1371.
[44] Verslegers L, Yu Z, Ruan Z, et al. From electromagnetically induced transparency to superscattering with a single structure:a coupled-mode theory for doubly resonant structures[J]. Phys Rev Lett, 2012, 108(8):083902.
[45] Tassin P, Zhang L, Zhao R, et al. Electromagnetically induced transparency and absorption in metamaterials:the radiating two-oscillator model and its experimental confirmation[J]. Phys Rev Lett, 2012, 109(18):187401.
[46] Qu K, Agarwal G S. Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems[J]. Phys Rev A, 2013, 87(3):031802.
[47] Liao Z, Pan B C, Shen X, et al. Multiple Fano resonances in spoof localezed surface plasmons[J]. Opt Express, 2014, 22(13):15710-15717.
[48] Chen L, Wei Y M, Zang X F, et al. Excitation of dark multipolar plasmonic resonances at terahertz frequencies[J]. Sci Rep, 2016, 6:22027.
[49] Zhang X, Xu Q, Li Q, et al. Asymmetric excitation of surface plasmons by dark mode coupling[J]. Sci Adv, 2016, 2(2):e1501142.
[50] Liu X, Gu J, Singh R, et al. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode[J]. Appl Phys Lett, 2012, 100(13):131101.
[51] Liang D, Zhang H, Gu J, et al. Plasmonic analogue of electromagneticlly induced transparency in stereo metamaterials[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4):1-7.
[52] Zhang X, Xu N, Qu K, et al. Electromagnetically induced absorption in a three-resonator metasurface system[J]. Sci Rep, 2015, 5:10737.
[53] Boiler K J, Imamo?lu A, Harris S E. Observation of electromagnetically induced transparency[J]. Phys Rev Lett, 1991, 66(20):2593-2596.
[54] Gu J, Singh R, Liu X, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nat Commun, 2012, 3:1151.
[55] Wu P C, Chen W T, Yang K Y, et al. Magnetic plasmon induced transparency in three-dimensional metamolecules[J]. Nanophotonics, 2012, 1(2):131-138.
[56] Yang Y M, Kravchenko I I, Briggs D, et al. All dielectric metasurface analogue of electromagnetically induced transparency[J]. Nat Commun, 2014, 5:5753.
[57] Kaelberer T, Fedotov V A, Papasimakis N, et al. Toroidal dipolar response in a metamaterial[J]. Science, 2010, 330(6010):1510-1512.
[58] Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947):1513-1515.
[59] Zhang S, Park Y S, Li J, et al. Negative refractive index in chiral metamaterials[J]. Phys Rev Lett, 2009, 102(2):023901.
[60] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950):824-830.
[61] Ebbesen T W, Genet C, Bozhevolnyi S I. Surface-plasmon circuitry[J]. Phys Today, 2008, 61(5):44-50.
[62] Sorger V J, Oulton R F, Ma R M, et al. Toward integrated plasmonic circuits[J]. MRS Bulletin, 2012, 37(8):728-738.
[63] Fang Y, Sun M. Nanoplasmonic waveguides:towards applications in integrated nanophotonic circuits[J]. Light:Science Application, 2015, 4(6):e294.
[64] Xu Y, Zhang X, Tian Z, et al. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces[J]. Appl Phys Lett, 2015, 107(2):021105.