[1] Peters M, Rossin V, Zucker E. High-power high-efficiency laser diodes at JDSU[C]//High-Power Diode Laser Technology and Applications V, 2007:1217-1222.
[2] Scholle K, Lamrini S, Koopmann P, et al. 2m Laser Sources and Their Possible Applications[M].[S.L.] Frontiers in Guided Wave Optics and Optoelectronics, 2010.
[3] Werle P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta Part A Molecular Biomolecular Spectroscopy, 1998, 54(2):197-236.
[4] Sun Quanshe, Chen Kunfeng, Shi Xueshun. Mid infrared laser power stabilizer[J]. Infrared and Laser Engineering, 2015, 44(7):2127-2131. (in Chinese)孙权社, 陈坤峰, 史学舜. 中红外激光器功率稳定器技术[J]. 红外与激光工程, 2015, 44(7):2127-2131.
[5] Zhang Dongyan, Wang Rongrui. Progress on mid-infrared lasers[J]. Laser Infrared, 2011, 41(5):487-491. (in Chinese)张冬燕, 王戎瑞. 高功率中红外激光器的进展[J]. 激光与红外, 2011, 41(5):487-491.
[6] Lamrini S, Koopmann P, Schfer M, et al. Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9m[J]. Applied Physics B, 2012, 106(2):315-319.
[7] Garbuzov D Z, Menna R J, Maiorov M A, et al. 2.3-to 2.7-m room-temperature cw operation of InGaAsSb/AlGaAsSb broad-contact and single-mode ridge-waveguide SCH-QW diode lasers[C]//Optoelectronics '99-Integrated Optoelectronic Devices. International Society for Optics and Photonics, 1999:124-129.
[8] Belenky G L, Kim J G, Shterengas L, et al. High-power 2.3m laser arrays emitting 10 W CW at room temperature[J]. Electronics Letters, 2004, 40(12):737-738.
[9] Belenky G, Shterengas L, Donetsky D, et al. Advances in Type-I GaSb based lasers[J]. Japanese Journal of Applied Physics, 2008, 47(10):8236-8238.
[10] Belenky G, Shterengas L, Kipshidze G, et al. Type-I diode lasers for spectral region above 3m[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5):1426-1434.
[11] Lin Y, Suchalkin S, Kipshidze G, et al. Effect of hole transport on performance of infrared type-Ⅱ superlattice light emitting diodes[J]. Journal of Applied Physics, 2015, 117(16):757.
[12] Yang R Q, Bradshaw J L, Bruno J D, et al. Room temperature type-Ⅱ interband cascade laser[J]. Applied Physics Letters, 2002, 81(3):397-399.
[13] Vurgaftman I, Meyer J R. High-performance interband cascade lasers emitting in the 2.9-4.2m wavelength range[C]//SPIE, 2009, 7230:747-748.
[14] Bewley W W, Kim C S, Kim M, et al. A new generation of interband cascade lasers[C]//15th International Conference on Narrow Gap Systems, AIP Conference Proceeding, 2011, 1416(1):46-48.
[15] Vurgaftman I, Bewley W W, Merritt C D, et al. Physics of interband cascade lasers[C]//Quantum Sensing and Nanophotonic Devices IX, International Society for Optics and Photonics, 2012:87-94.
[16] Vurgaftman I, Meyer J R. Mid-IR distributed-feedback interband cascade lasers[C]//Quantum Sensing and Nanophotonic Devices X, 2013:1372-1375.
[17] Popov A, Sherstnev V, Yakovlev Y, et al. High power InAsSb/InAsSbP double heterostructure laser for continuous wave operation at 3.6m[J]. Applied Physics Letters, 1996, 68(20):2790-2792.
[18] Simanowski S, Herres N, Mermelstein C, et al. Strain adjustment in (GaIn)(AsSb)/(AlGa)(AsSb) QWs for 2.3-2.7m laser structures[J]. Journal of Crystal Growth, 2000, 209(1):15-20.
[19] Mermelstein C, Rattunde M, Kiefer R, et al. Physics and applications of Ⅲ-Sb-based type-I QW diode lasers[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2002, 4651:173-184.
[20] Kelemen M T, Rattunde M, Wagner J. Mid-infrared high-power diode lasers and modules[C]//SPIE, 2010, 7583:75830O.
[21] Kaspar S, Rattunde M, Tpper T, et al. Recent advances in 2-m GaSb-based semiconductor disk laser-Power scaling, narrow-linewidth and short-pulse operation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4):1501908.
[22] Yang R Q, Hill C J, Yang B H. High-temperature and low-threshold midinfrared interband cascade lasers[J]. Applied Physics Letters, 2005, 87(15):151109.
[23] Hill C J, Mansour K, Qiu Y, et al. Thermoelectric cooled mid-IR interband cascade lasers[C]//Semiconductor Laser Conference, 2006 Conference Digest, 2006:93-94.
[24] Rodriguez J B, Cerutti L, Tournie E. GaSb-based, 2.2m type-I laser fabricated on GaAs substrate operating continuous wave at room temperature[J]. Applied Physics Letters, 2009, 94(2):1875.
[25] Tourni E, Sanchez D, Cerutti L. Single mode operation of monolithic GaSb VCSELs[C]//Mirsens, 2012.
[26] Motyka M, Ryczko K, Sek G, et al. Type Ⅱ quantum wells on GaSb substrate designed for laser-based gas sensing applications in a broad range of mid infrared[J]. Optical Materials, 2012, 34(7):1107-1111.
[27] Weih R, Bauer A, Kamp M, et al. Interband cascade lasers with AlGaAsSb bulk cladding layers[J]. Optical Materials Express, 2013, 3(10):1624-1631.
[28] Tian Z, Hinkey R, Zhao F, et al. Interband cascade lasers with separate-confinement layers[C]//LEOS 2008-, Meeting of the IEEE Lasers and Electro-Optics Society, IEEE, 2008:749-750.
[29] Mansour K, Hill C J, Qiu Y, et al. Dual-wavelength interband cascade lasers in mid-infrared spectral region[C]//Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on IET, 2008:1-2.
[30] Jiang Y, Li L, Tian Z, et al. Electrically widely tunable interband cascade lasers[J]. Journal of Applied Physics, 2014, 115(11):2697-2702.
[31] Vizbaras A, Dvinelis E, Trinkūnas A, et al. High-performance mid-infrared GaSb laser diodes for defence and sensing applications[C]//SPIE Defense, Sensing and Security, 2014:90-98.
[32] Melngailis I. Maser action in InAs diodes[J]. Applied Physics Letters, 1963, 2(9):176-178.
[33] Caneau C, Srivastava A K, Dentai A G, et al. Room-temperature GaInAsSb/AlGaAsSb DH injection lasers at 2.2 microns[J]. Electronics Letters, 1985, 21(18):815-817.
[34] Chiu T H, Tsang W T, Ditzenberger J A, et al. Room-temperature operation of InGaAsSb/AlGaSb double heterostructure lasers near 2.2m prepared by molecular beam epitaxy[J]. Applied Physics Letters, 1986, 49(17):1051-1052.
[35] Choi H K, Eglash S J. High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1m with low threshold current density[J]. Applied Physics Letters, 1992, 61:1154-1156.
[36] Lee H, York P K, Menna R J, et al. Room-temperature 2.78m AlGaAsSb/GaInAsSb quantum-well lasers[J]. Appl Phys Lett, 1995, 66:1942.
[37] Garbuzov D Z, Martinelli R U, Lee H, et al. 4 W quasi-continuous-wave output power from 2m AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes[J]. Applied Physics Letters, 1997, 70(22):2931-2933.
[38] Rattunde M, Mermelstein C, Schmitz J, et al. Comprehensive modeling of the electro-optical-thermal behavior of (AlGaIn)(AsSb)-based 2.0m diode lasers[J]. Applied Physics Letters, 2002, 80(22):4085-4087.
[39] Rattunde M, Schmitz J, Kaufel G, et al. GaSb-based 2.X m quantum-well diode lasers with low beam divergence and high output power[J]. Applied Physics Letters, 2006, 88(8):2931.
[40] Kelemen M T, Weber J, Rattunde M, et al. High-power 1.9m diode laser arrays with reduced far-field angle[J]. IEEE Photonics Technology Letters, 2006, 18(4):628-630.
[41] Kim J G, Shterengas L, Martinelli R U, et al. High-power room-temperature continuous wave operation of 2.7 and 2.8m In(Al)GaAsSb/GaSb diode lasers[J]. Applied Physics Letters, 2003, 83(10):1926-1928.
[42] Xing Junliang, Zhang Yu, Liao Yongping, et al. Investigation of interfaces in AlSb/InAs/Ga0.71In0.29Sb quantum wells by photoluminescence[J]. Journal of Applied Physics, 2014, 116(12):406.
[43] Xing Junliang, Zhang Yu, Liao Yongping, et al. Room-temperature operation of 2.4m InGaAsSb/A1GaAsSb quantum-well laser diodes with low-threshold current density[J]. Chinese Physics Letters, 2014, 31(5):69-71.
[44] Yong Cheng'ao, Zhang Yu, Liao Yongping, et al. 2-m single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography[J]. Chinese Physics B, 2016, 25(2):181-185.
[45] Liao Yongping, Zhang Yu, Xing Junliang, et al. High power laser diodes of 2m AlGaAsSb/InGaSb type I quantum-wells[J]. Journal of Semiconductors, 2015, 36(5):50-53.
[46] Liao Yongping, Zhang Yu, Xing Junliang, et al. GaSb-based quantum wells 2m high power laser diode[J]. Chinese Journal of Laser, 2015, 42(S1):S102006. (in Chinese)廖永平, 张宇, 邢军亮, 等. 锑化镓基量子阱2m大功率激光器[J]. 中国激光, 2015, 42(S1):S102006.
[47] Peters M, Rossin V, Zucker E. High-power high-efficiency laser diodes at JDSU[C]//High-Power Diode Laser Technology and Applications V, 2007:1217-1222.
[48] Rattunde M, Schmitz J, Kaufel G, et al. GaSb-based 2.X m quantum-well diode lasers with low beam divergence and high output power[J]. Applied Physics Letters, 2006, 88(8):2931.
[49] Li Z G, Liu G J, You M H, et al. 2.0m room temperature CW operation of InGaAsSb/AlGaAsSb laser with asymmetric waveguide structure[J]. Laser Physics, 2009, 19(6):1230-1233.
[50] Chen J, Kipshidze G, Shterengas L. Diode lasers with asymmetric waveguide and improved beam properties[J]. Applied Physics Letters, 2010, 96(24):151.
[51] Shterengas L, Liang R, Kipshidze G, et al. Cascade type-I quantum well diode lasers emitting 960-mW near 3-m[J]. Applied Physics Letters, 2014, 105(16):797-800.
[52] Hosoda T, Feng T, Shterengas L, et al. High power cascade diode lasers emitting near 2-m[J]. Applied Physics Letters, 2016, 108(13):1089.