[1] Sakai H, Kan H, Taira T. 1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser[J]. Optics Express, 2008, 16(24):19891-19899.
[2] Dong J, Ueda K I, Yagi H, et al. Laser-diode pumped self-Q-switched microchip lasers[J]. Optical Review, 2008, 15(2):57-74.
[3] Lee H C, Brownlie P L, Meissner H E, et al. Diffusion bonded composites of YAG single crystals[C]//Proceedings of SPIE, 1991, 1624:2-10.
[4] Miao Jieguang, Wang Baoshan, Peng Jiying, et al. Efficient diode-pumped passively Q-switched laser with Nd:YAG/Cr:YAG composite crystal[J]. Optics and Laser Technology, 2008, 40(1):137-141.
[5] Tsunekane M, Taira T. Long time operation of composite ceramic Nd:YAG/Cr:YAG micro-chip lasers for ignition[C]//Laser Ignition Conference. Illinois:Optical Society of America, 2015, T4A.3.
[6] Zhu S Q, Wang S E, Chen Z Q, et al. High-power passively Q-switched 532 nm green laser by using Nd:YAG/Cr4+:YAG composite crystal[J]. Laser Physics, 2012, 22(6):1011-1014.
[7] Jiang Wei, Zhu Siqi, Chen Xuezhang, et al. Compact passively Q-switched Raman laser at 1176 nm and yellow laser at 588 nm using Nd3+:YAG/Cr4+:YAG composite crystal[J]. Applied Optics, 2014, 53(7):1328-1332.
[8] Jie Song, Cheng Li, Kenichi Ueda. Thermal influence of saturable absorber in passively Q-switched diode-pumped CW Nd:YAG/Cr4+:YAG laser[J]. Optics Communications, 2000, 177:307-316.
[9] Jiang W, Zhu S, Chen Z Q, et al. Green laser with V-shaped resonant cavity based on Nd:YAG/Cr4+:YAG/YAG composite crystal rod[J]. Journal of Applied Spectroscopy, 2013, 80(5):694-697.
[10] Zhu S, Chen Z, Chen Z, et al. Diode-side-pumped passively Q-switched mode-locked 532 nm laser with a Nd:YAG/Cr4+:YAG/YAG composite crystal[J]. Journal of Russian Laser Research, 2013, 34(6):575-580.
[11] Chen Zaijun, Zhu Siqi, Chen Yujiao, et al. Comparison of passively Q-switched LD side-pumped green laser by using Nd3+:YAG/Cr4+:YAG/YAG composite crystals of different initial transmissions[J]. Optics and Laser Technology, 2013, 54:362-366.
[12] Wang S, Zhu S, Chen Z, et al. High average power, side-pumped passively Q-switched laser of 1064 nm by using composite crystal Nd:YAG/Cr4+:YAG/YAG[J]. Journal of Optics, 2014, 43(3):183-187.
[13] Zhu S, He Q, Wang S, et al. High average power passively Q-switched laser diode side-pumped green laser by using Nd:YAG/Cr4+:YAG/YAG composite crystal[J]. Journal of Laser Applications, 2014, 26(3):032009.
[14] Zhu Siqi, Chen Zaijun, Chen Zhenqiang, et al. A LD side-pumped deep ultraviolet laser at 266 nm by using a Nd:YAG/Cr4+:YAG/YAG composite crystal[J]. Optics and Laser Technology, 2014, 63:24-28.
[15] Zhu Siqi, Zhou Haiqiong, Jiang Wei, et al. Compact and efficient passively Q-switched laser at 473 nm with an Nd:YAG/YAG/Cr4+:YAG/YAG multifunctional composite crystal[J]. Applied Optics, 2016, 55(15):4166-4169.
[16] Jiang Wei, Liu Yumeng, Chen Weidong, et al. Composite Yb:YAG/Cr4+:YAG/YAG crystal passively Q-switched lasers at 1030 nm[J]. Applied Optics, 2015, 54(7):1834-1838.
[17] Ye Pingping, Zhu Siqi, Li Zhen, et al. Passively Q-switched dual-wavelength green laser with an Yb:YAG/Cr4+:YAG/YAG composite crystal[J]. Optics Express, 2017, 25(5):5179-5185.
[18] Dong Jun, Deng Peizhen, Liu Yupu, et al. Passively Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber[J]. Applied Optics, 2001, 40(24):4303-4307.
[19] Bibeau C, Beach R J, Mitchell S C, et al. High-average-power 1-m performance and frequency conversion of a diode-end-pumped Yb:YAG laser[J]. IEEE Journal of Quantum Electronics, 1998, 34(10):2010-2019.
[20] Bruesselbach H W, Sumida D S, Reeder R A, et al. Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(1):105-116.
[21] Lacovara P, Choi H K, Wang C A, et al. Room-temperature diode-pumped Yb:YAG laser[J]. Optics Letters, 1991, 16(14):1089-1091.
[22] Koerner J, Vorholt C, Liebetrau H, et al. Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20℃ and 200℃and predictions on their influence on laser performance[J]. Journal of the Optical Society of America B, 2012, 29(9):2493-2502.
[23] Zhu Siqi, Jiang Wei, Liu Yumeng, et al. Pulse fluctuations caused by the thermal lens effect in a passively Q-switched laser system[J]. Journal of Russian Laser Research, 2015, 36(4):377-384.