[1]
[2] Rogalski A. HgCdTe infrared detector material: history, status and outlook[J]. Rep Prog Phys, 2005, 68: 2267-2336.
[3] Gravrand O. Study of LWIR and VLWIR focal plane array developments: comparison between p-on-n and different n-on-p technologies on LPE HgCdTe[J]. Journal of Electronic Materials, 2009, 38(8): 1733-1740.
[4]
[5]
[6] Tobin S P. Advances in composition control for 16 m LPE p-on-n HgCdTe heterojunction photodiodes for remote sensing application at 60 K[J]. Journal of Electronic Materials, 1999, 28(6): 596-602.
[7]
[8] He Li. Recent progress of the 3rd generation infrared FPAS[J]. Infrared and Laser Engineering, 2007, 36(5): 696-701.
[9] Liu Dafu. Temperature effect on I-V characteristcs of the HgCdTe diodes[J]. Infrared and Laser Engineering, 2007, 36(4):443-446.
[10]
[11]
[12] Gilmore Angelo S. Advancements in HgCdTe VLWIR materials[C]//SPIE, 2005, 5783: 223-230.
[13] Wenus J. Analysis of VLWIR HgCdTe photodiode performance[J]. Opto-Electronics Review, 2003, 11(2): 143-149.
[14]
[15] Zeng Gehong. Analysis of current-voltage characteristics of the HgCdTe diodes with a parasite p-n junction[J]. Infrared Technology, 1996, 18(6): 1-3.
[16]
[17] McLevige W V. Variable-area diode data analysis of surface and bulk effects in MWIR HgCdTe/CdTe/Sapphire photodetectors[J]. Semicond Sci Technol, 1993, (8): 946-952.
[18]
[19]
[20] Vishnu Gopal. Variable-area diode data analysis of surface and bulk effects in HgCdTe photodetector arrays[J]. Semicond Sci Technol, 1994, (9): 2267-2271.
[21] Vishnu Gopal. A general relation between Zero-bias resistance-area product and perimeter-to-area ratio of the diodes in variable-area diode test structures[J]. Semicond Sci Technol, 1996, (11): 1070-1076.