[1] Chang G K, Liu C, Zhang L. Architecture and applications of a versatile small-cell, multi-service cloud radio access network using radio-over-fiber technologies[C]//IEEE International Conference on Communications (ICC), 2013, 51(4):879-883.
[2] Maier M, Ghazisaidi N, Reisslein M. The audacity of fiber wireless (FiWi) networks[C]//ICST Int Conf Access Nets, 2008, 6:16-35.
[3] Gomes N J, Assimaopoulos P, Vieira L C, et al. Fiber link design considerations for cloud-radio access networks[C]//IEEE International Conference on Communications (ICC), 2014:1109.
[4] Ghazisaidi N, Scheutzow M, Maier M. Survivability analysis of next-generation passive optical networks and fiber-wireless access networks[J]. IEEE Transactions on Reliability, 2017, 60:737-740.
[5] Wake D, Nkansah A, Gomes N J. Radio over fiber link design for next generation wireless systems[J]. J Lightw Technol, 2010, 28:2456-2464.
[6] Shi P M, Yu S, Li Z K, et al. A novel frequency sextupling scheme for optical mm-wave generation utilizing an integrated dual-parallel Mach-Zehnder modulator[J]. Optics Communications, 2010, 283:3667-3672.
[7] Muthu K E, Raja A S. Frequency sextupling using single LN-MZM and 2.5 Gb/s ROF transmission[C]//IEEE Wispnnet, 2016:1842-1844.
[8] Lu J, Dong Z, Liu J F, et al. Generation of a frequency sextupled optical millimeter wave with a suppressed central using one single-electrode modulator[J]. Optical Fiber Technology, 2014, 20:533-536.
[9] Li W, Zhu N H. Photonic MMW-UWB signal generation via DPMZM-based frequency up-conversion[J]. IEEE Photonics Technology Letters, 2013, 25:1875-1877.
[10] Sebastian Babiel, Astushi Kanno. Raido-over fiber photonic wireless bridge in the W-Band[C]//ICC, 2013, 25:838-842.
[11] Gao Y S, Wen A J, Jiang W, et al. Photonic microwave generation with frequency octupling based on a DP-QPSK modulator[J]. IEEE Photonics Technology Letters, 2015, 27:2260-2263.
[12] Liang D, Jiang W, Tan Q G, et al. A novel optical millimeter-wave signal generation approach to overcome chromatic dispersion[J]. Optics Communications, 2014, 320:94-98.
[13] Clar T R, O' Connor S R, Dennis M L. A phase-modulation I/Q demodulation microwave-to-digital photonic link[J]. IEEE Trans Microw Theory Tech, 2010, 58:3039-3058.
[14] Cui Y, Dai Y T, Yin F F, e al. Enhanced spurious-free dynamic range in intensity-modulated analog photonic link using digital post processing[J]. IEEE Photonics Journal, 2014, 6:1-8.
[15] Zhu Z H, Zhao S H, Tan Q G, et al. A linearized optical single-sideband modulation analog microwave photonic link using dual-parallel interferometers[J]. IEEE Photonics Journal, 2013, 5:5501712.
[16] Li X, Zhu Z H, Zhao S H. An intensity modulation and coherent balanced detection intersatellite microwave photonic link using polarization direction control[J]. Opical Laser Technoloty, 2014, 56:362-366.
[17] Li S, Zheng X, Zhang H, et al. Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach-Zehnder modulator[J]. IEEE Photonics Technology Letters, 2010, 24:1775-1777.
[18] Li J, Zhang Y C, Yu S, et al. Third-order intermodulation distortion elimination of microwave photonics link based on integrated dual-drive dual-parallel Mach-Zehnder modulator[J]. Optics Experss, 2013, 38:4285-4287.
[19] Li W Z, Yao J P. Dynamic range improvement of a microwave photonic link based on bi-directional used of a polarization modulator in a Sagnac loop[J]. Optics Express, 2013, 13:15692-15697.
[20] Jiang W, Tan Q G, Qin W Z, et al. A linearization analog photonic link with high third-order intermodulation distortion suppression based on dual-parallel mach-zehnder modulator[J]. IEEE Photonics Journal, 2015, 3:1-8.