[1] Barnes W L, Dereux Amp A, Ebbesen T W. Surface plasmon subwavelength optics.[J]. Nature, 2003, 424(6950):824-830.
[2] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6):667-669.
[3] Sun Bin, Wang Lingling, Wang Liu, et al. Improved extraordinary optical transmission though single nano-slit by nano-defocusing.[J]. Opt Laser Technol, 2013, 54:214-218.
[4] Wijesinghe T M, Premaratne M, Agrawal G P. Low-loss dielectric-loaded graphene surface plasmon polariton waveguide basedbiochemical sensor[J]. Journal of Applied Physics, 2015, 117(21):641-648.
[5] Grodecki K, Bozek R, Strupinski W, et al. Raman spectroscopy on transition metals[J]. Analytical Bioan-Alytical Chemistry, 2007, 388(1):29-45.
[6] Ortuno R, Garcameca C, Rodrguezfortuno F J, et al. Modeling high-order plasmon resonances of a U-shaped nanowire used to build a negative-index metamaterial[J]. Physical Review B, 2009, 79(7):075103.
[7] Delgado V, Marqus R. Surface impedance model for extraordinary transmission in 1D metallic and dielectric screens[J]. Optics Express, 2011, 19(25):25290-25297.
[8] Fang Junfei, Deng Jianping, Zhang Pengchao. Enhancement of radiative properties of silver by surface structure with spherical resonant cavity[J]. Infrared and Laser Engineering, 2016, 45(9):0916001. (in Chinese)
[9] Rodrigo S G, Mahboub O, Degiron A, et al. Holes with very acute angles:a new paradigm of extraordinary optical transmission through strongly localized modes[J]. Optics Express, 2010, 18(23):23691-23697.
[10] Yao Chenggang, Li Jun, Li Long. Structural optimization of ring resonant cavity consisted with symmetry prisms[J]. Infrared and Laser Engineering, 2016, 45(11):1118002. (in Chinese)
[11] Chen J, Li Z, Lei M, et al. Broadband unidirectional generation of surface plasmon polaritons with dielectric film coated asymmetric single slit[J]. Optics Express, 2011, 19(27):26463-26469.
[12] Marani R, Marrocco V, Grande M, et al. Enhancement of extraordinary optical transmission in a double heterostructure plasmonic bandgap cavity[J]. Plasmonics, 2011, 6(3):469-476.
[13] Hou Y. Extremely high transmittance at visible wavelength induced by magnetic resonance[J]. Plasmonics, 2011, 6(2):289-293.
[14] Liu Jianping, Wang Lingling, Sun Bin, et al. Enhanced optical transmission through a nano-slit based on a dipole source and an annular nano-cavity[J]. Opt Laser Technol, 2015, 69:71-76.
[15] Subramania G, Foteinopoulou S, Brener I. Nonresonant broadband funneling of light via ultrasubwavelength channels[J]. Physical Review Letters, 2011, 107(16):163902.
[16] Pang S, Zhang Z, Qu S. Nonresonant enhanced optical transmission through the metallic circular nanohole arrays[J]. Scientia Sinica, 2014, 44(2):142-149. (in Chinese)
[17] Shen H, Maes B. Enhanced optical transmission through tapered metallic gratings[J]. Applied Physics Letters, 2012, 100(24):241104.
[18] Nooshnab V, Golmohammadi S. Revealing the effect of plasmon transmutation on charge transfer plasmons in substrate-mediated metallodielectric aluminum clusters[J]. Optics Communications, 2017, 382:354-360.
[19] Li Yihan, Zhang Mile, Cui Hailin, et al. Terahertz absorbing properties of different metal split-ring resonators[J]. Infrared and Laser Engineering, 2016, 45(12):1225002. (in Chinese)
[20] Qin Y, Cao W, Zhang Z Y. Enhanced optical transmission through metallic slits embedded with rectangular cavities[J]. Acta Physica Sinica, 2013, 62(12):127302. (in Chinese)
[21] Al A, D'Aguanno G, Mattiucci N, et al. Plasmonic Brewster angle:broadband extraordinary transmission through optical gratings[J]. Physical Review Letters, 2011, 106(12):123902.
[22] Economou E N. Surface plasmons in thin films[J]. Physical Review, 1969, 182(2):539-554.
[23] Palik E D. Lithium Niobate(LiNbO3)[J]. Handbook of Optical Constants of Solids, 1997, 20(2):695-702.