[1] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nat Photonics, 2013, 7(11):868-874.
[2] Liu M, Luo A, Yan Y, et al. Successive soliton explosions in an ultrafast fiber laser[J]. Opt Lett, 2016, 41(6):1181-1184.
[3] Mou C, Sergeyev S, Rozhin A, et al. All-fiber polarization locked vector soliton laser using carbon nanotubes[J]. Opt Lett, 2011, 36(19):3831-3833.
[4] Liu Y, Li W, Luo D, et al. Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Opt Express, 2016, 24(10):10939-10945.
[5] Shah L, Fermann M E, Dawson J W, et al. Micromachining with a 50 W, 50J, sub-picosecond fiber laser system[J]. Opt Express, 2006, 14(25):12546-12551.
[6] Lu H K O, Elahi P, Aalan A, et al. High-repetition-rate ultrafast fiber lasers for material processing[J]. IEEE J Sel Top Quantum Electron, 2018, 24(3):8800312.
[7] Limpert J, Roser F, Schimpf D N, et al. High repetition rate gigawatt peak power fiber laser systems:challenges, design, and experiment[J]. IEEE J Sel Top Quantum Electron, 2009, 15(1):8800312.
[8] Frantz L M, Nodvik J S. Theory of pulse propagation in a laser amplifier[J]. J Appl Phys, 1963, 34(8):2346-2349.
[9] Wang Y, Po H. Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification[J]. J Lightwave Technol, 2003, 21(10):2262-2270.
[10] Schimpf D N, Ruchert C, Nodop D, et al. Compensation of pulse-distortion in saturated laser amplifiers[J]. Opt Express, 2008, 16(22):17637-17646.
[11] Su R, Zhou P, Wang X, et al. Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers[J]. Opt Lett, 2012, 37(4):497-499.
[12] Su R, Zhou P, Wang X, et al. Active coherent beam combining of a five-element, 800 watt nanosecond fiber amplifier array[J]. Opt Lett, 2012, 37(19):3978-3980.
[13] Malinowski A, Vu K T, Chen K K, et al. High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping[J]. Opt Express, 2009, 17(23):20927-20937.
[14] Lin D, Alam S, Chen K, et al. 100W, fully-fiberised ytterbium doped master oscillator power amplifier incorporating adaptive pulse shaping[C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2009, CFM4.
[15] Malinowski A, Gorman P, Codemard C A, et al. High-peak-power, high-energy, high-average-power pulsed fiber laser system with versatile pulse duration and shape[J]. Opt Lett, 2013, 38(22):4686-4689.
[16] Jiang M, Su R, Zhang P, et al. Arbitrary temporal shape pulsed fiber laser based on SPGD algorithm[J]. Laser Physics Letters, 2018, 15(6):065101.
[17] Sobon G A K P. Pulsed dual-stage fiber MOPA source operating at 1550 nm with arbitrarily shaped output pulses[J]. Appl Phys B, 2011, 105(4):721-727.
[18] Li Z, Heidt A M, Teh P S, et al. High-energy diode-seeded nanosecond 2m fiber MOPA systems incorporating active pulse shaping[J]. Opt Lett, 2014, 39(6):1569-1572.
[19] Shi H A T F. High-power diode-seeded thulium-doped fiber MOPA incorporating active pulse shaping[J]. Appl Phys B, 2016, 122(10):269.
[20] Zhang H, Tang D Y, Zhao L M, et al. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene[J]. Opt Express, 2009, 17(20):17630-17635.
[21] Sun Z, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2010, 4(2):803-810.
[22] Wang X, Zhou P, Wang X, et al. Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation[J]. Opt Express, 2014, 22(5):6147-6153.
[23] Fermann M E, Andrejco M J, Silberberg Y, et al. Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber[J]. Opt Lett, 1993, 18(11):894-896.
[24] Yu Y, Teng H, Wang H, et al. Highly-stable mode-locked PM Yb-fiber laser with 10 nJ in 93-fs at 6 MHz using NALM[J]. Opt Express, 2018, 26(8):10428-10434.
[25] Haus H A. Mode-locking of lasers[J]. IEEE J Sel Top Quantum Electron, 2000, 6(6):1173-1185.
[26] Baumeister T, Brunton S L, Kutz J N. Deep learning and model predictive control for self-tuning mode-locked lasers[J]. J Opt Soc Am B, 2018, 35(3):617-626.
[27] Hellwig T A W T. Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation[J]. Appl Phys B, 2010, 101(3):565-570.
[28] Shen X, Li W, Yan M, et al. Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers[J]. Opt Lett, 2012, 37(16):3426-3428.
[29] Olivier M, Gagnon M, E M P. Automated mode locking in nonlinear polarization rotation fiber lasers by detection of a discontinuous jump in the polarization state[J]. Opt Express, 2015, 23(5):6738-6746.
[30] Radnatarov D, Khripunov S, Kobtsev S, et al. Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution[J]. Opt Express, 2013, 21(18):20626-20631.
[31] Woodward R I, Kelleher E J R. Towards smart lasers:self-optimisation of an ultrafast pulse source using a genetic algorithm[J]. Scientific Reports, 2016, 6:37616.
[32] Brunton S L, Fu X, Kutz J N. Extremum-seeking control of a mode-locked laser[J]. IEEE J Quantum Electron, 2013, 49(10):852-861.
[33] Brunton S L, Fu X, Kutz J N. Self-tuning fiber lasers[J]. IEEE J Sel Top Quantum Electron, 2014, 20(5):1101408.
[34] Andral U, Fodil R S, Amrani F, et al. Fiber laser mode locked through an evolutionary algorithm[J]. Optica, 2015, 2(4):275-278.
[35] Andral U, Buguet J, Fodil R S, et al. Toward an autosetting mode-locked fiber laser cavity[J]. J Opt Soc Am B, 2016, 33(5):825-833.
[36] Woodward R I, Kelleher E J. Self-optimizing mode-locked laser using a genetic algorithm[C]//Conference on Lasers and Electro-Optics, 2016, STu3P.6.
[37] Winters D G, Kirchner M S, Backus S J, et al. Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser[J]. Opt Express, 2017, 25(26):33216-33225.
[38] Woodward R I, Kelleher E J R. Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers[J]. Opt Lett, 2017, 42(15):2952-2955.
[39] Burgoyne B, Illeneuve A V. Programmable lasers:design and applications[C]//SPIE, 2010, 7580:758002.
[40] Thberge F, Daigle J F, Villeneuve A, et al. Tunable mid-infrared generation using synchronized programmable fiber lasers[C]//SPIE, 2012, 8381:83810E.
[41] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nat Photonics, 2013, 7(4):258-261.
[42] Moustaizis S D, Lalousis P, Perrakis K, et al. ICAN:High power neutral beam generation[J]. Eur Phys J Special Topics, 2015, 224(13):2639-2643.
[43] Liu Z, Zhou P, Xu X, et al. Coherent Beam Combing of High Average Power Fiber Lasers[M]. Beijing:National Defence Industry Press, 2016. (in Chinese)刘泽金, 周朴, 许晓军, 等. 高平均功率光纤激光相干合成[M]. 北京:国防工业出版社, 2016.
[44] Vorontsov M A, Carhart W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Opt Lett, 1997, 22(12):907-909.
[45] Zhou P, Ma Y, Wang X, et al. Coherent beam combining of fiber amplifiers based on stimulated annealing algorithm[J]. High Power Laser and Particle Beams, 2010, 22(5):973-977. (in Chinese)周朴, 马阎星, 王小林, 等. 模拟退火算法光纤放大器相干合成[J]. 强激光与粒子束, 2010, 22(5):973-977.
[46] Jiang M, Su R, Zhang Z, et al. Coherent beam combining of fiber lasers using a CDMA-based single-frequency dithering technique[J]. Appl Opt, 2017, 56(15):4255-4260.
[47] Jiang M, Su R, Zhang Z, et al. Joint multiple access based efficient coherent beam combining of fiber lasers[J]. Laser Phys, 2018. (Submitted)
[48] Goodno G D, Weiss S B. Automated co-alignment of coherent fiber laser arrays via active phase-locking[J]. Opt Express, 2012, 20(14):14945-14953.
[49] Su R, Zhou P, Zhang P, et al. Review on the progress in coherent beam combining of ultra-short fiber lasers[J]. Infrared and Laser Engineering, 2018, 47(1):0103001. (in Chinese)粟荣涛, 周朴, 张鹏飞, 等. 超短脉冲光纤激光相干合成[J]. 红外与激光工程, 2018, 47(1):0103001.
[50] Yu H L, Zhang Z X, Wang X L, et al. High average power coherent femtosecond pulse combining system based on an all fiber active control method[J]. Laser Phys Lett, 2018, 15(7):075101.
[51] Jauregui C, Limpert J, Tunnermann A. High-power fibre lasers[J]. Nat Photon, 2013, 7(11):861-867.
[52] Tao R, Wang X, Zhou P. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications[J]. IEEE J Sel Top Quantum Electron, 2018, 24(3):0903319.
[53] Pangovski K, Sparkes M, Cockburn A, et al. Control of material transport through pulse shape manipulation-a development toward designer pulses[J]. IEEE J Sel Top Quantum Electron, 2014, 20(5):0901413.
[54] Tercan H A K T. Improving the laser cutting process design by machine learning techniques[J]. Production Engineering, 2017, 11(2):195-203.
[55] Zhou P. Intelligent laser:a versatile tool for multidisciplinary education in photonics[C]//International Conference on Education and Training in Optics and Photonics (ETOP), 2017.