[1] Gallais L, Capoulade J, Natoli J Y, et al. Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering[J]. Applied Optics, 2008, 47(13):107-113.
[2] Zhang L, Cheng X, Zhang J, et al. Characterization of grain sizes and roughness of HfO2 single layers[J]. Applied Optics, 2017, 56(4):24-29.
[3] Al Asmar R, Juillaguet S, Ramonda M, et al. Fabrication and characterization of high quality undoped and Ga2O3-doped ZnO thin films by reactive electron beam co-evaporation technique[J]. Journal of Crystal Growth, 2005, 275(3-4):512-520.
[4] Chen J S, Chao S, Kao J S, et al. Mixed films of TiO2-SiO2 deposited by double electron beam coevaporation[J]. Applied Optics, 1996, 35(1):90-96.
[5] Mende M, Schrameyer S, Ehlers H, et al. Laser damage resistance of ion-beam sputtered Sc2O3/SiO2 mixture optical coatings[J]. Applied Optics, 2013, 52(7):1368-1376.
[6] Mazur M, Poniedzialek A, Kaczmarek D, et al. Investigation of various properties of HfO2-TiO2 thin film composites deposited by multi-magnetron sputtering system[J]. Applied Surface Science, 2017, 421:170-178.
[7] Stenzel O, Wilbrandt S, Schurmann M, et al. Mixed oxide coatings for optics[J]. Applied Optics, 2011, 50(9):69-74.
[8] Xing H, Zhu M, Chai Y, et al. Study of hafina-silica mixed coatings with different compositions prepared by E-beam co-evaporation[C]//SPIE, 2015, 9532:1-6.
[9] Kamble N M, Tokas R B, Biswas A, et al. Determination of the optical constants of HfO2-SiO2 composite thin films through reverse fitting of transmission spectra[J]. Vacuum, 2011, 86(4):422-428.
[10] Jena S, Tokas R B, Kamble N M, et al. Optical properties and laser damage threshold of HfO2-SiO2 mixed composite thin films[J]. Applied Optics, 2014, 53(5):850-860.
[11] Zhang J, Bu X, Ma B, et al. Research on the mechanical stability of high laser resistant coatings on lithium triborate crystal[J]. Applied Optics, 2017, 56(4):117-122.
[12] Abernathy M R, Hough J, Martin I W, et al. Investigation of the Young's modulus and thermal expansion of amorphous titania-doped tantala films[J]. Applied Optics, 2014, 53(15):3196-3202.
[13] Yang C, Pham J. On the fracture toughness measurement of thin film coated silicon wafers[J]. Silicon, 2015, 7(1):27-30.
[14] Ohring M, Materials Science of Thin Films[M]. San Diego:Academic Press, 2001.
[15] Tsai R Y. Hardness of TiO2-MgF2 mixed films prepared by reactive ion-assisted deposition[J]. Applied Physics Letters, 1994, 65(1):37-39.
[16] Venkatachalam D K, Bradby J E, Saleh M N, et al. Nanomechanical properties of sputter-deposited HfO2 and HfxSi1-xO2 thin films[J]. Journal of Applied Physics, 2011, 110(4):043527.
[17] Niu X, Jiao H, Bao G, et al, HfO2-SiO2 mixed film deposited by ion-assisted deposition coevaporation[C]//SPIE, 2017, 10447:9.
[18] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6):1564-1583.
[19] Tamulevicius S. Stress and strain in the vacuum deposited thin films[J]. Vacuum, 1998, 51(2):127-139.
[20] Mehrotra K, Oliver J B, Lambropoulos J C. Nano-indentation of single-layer optical oxide thin films grown by electron-beam deposition[J]. Applied Optics, 2015, 54(9):2435-2440.
[21] Vargas A L M, Ribeiro F D, Hubler R. Changes in the Young's modulus of hafnium oxide thin films[J]. Nuclear Instruments Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2015, 365(Part A):362-366.
[22] Tsai R Y, Hua M Y. Microstructural, optical, and mechanical properties of reactive electron beam coevaporated TiO2-MgF2 composite films[J]. Applied Optics, 1996, 35(25):5073-5079.
[23] Pond B J, Debar J I, Carniglia C K, et al. Stress reduction in ion beam sputtered mixed oxide films[J]. Applied Optics, 1989, 28(14):2800-2805.