[1] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser[J]. Science, 1994, 264(5158):553-556.
[2] Corrigan P, Martini R, Whittaker E A, et al. Quantum cascade lasers and the Kruse model in free space optical communication[J]. Optics Express, 2009, 17(6):4355-4359.
[3] Faist J, Capasso F, Sirtori C, et al. Room temperature mid-infrared quantum cascade lasers[J]. Electronics Letters, 1996, 32(6):560-561.
[4] Beck M, Hofstetter D, Aellen T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295(5553):301-305.
[5] Faist J, Gmachl C, Capasso F, et al, Distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 1997, 70(20):2670-2672.
[6] Blaser S, Yarekha D, Hvozdara L, et al. Room-temperature, continuous-wave, single-mode quantum-cascade lasers at 5:4 m[J]. Applied Physics Letters, 2005, 86:1-3.
[7] Liu F Q, Zhang Y Z, Zhang Q S, et al. High-performance strain-compensated InGaAs/InAlAs quantum cascade lasers[J]. Semiconductor Science and Technology, 2000, 15(12):L44.
[8] Bai Y, Bandyopadhyay N, Tsao S, et al. Room temperature quantum cascade lasers with 27% wall plug efficiency[J]. Applied Physics Letters, 2011, 98(18):181102.
[9] Hugi A, Villares G, Blaser S, et al. Mid-infrared frequency comb based on a quantum cascade laser[J]. Nature, 2012, 492(7428):229-233.
[10] Yao D Y, Zhang J C, Liu F Q, et al. Surface emitting quantum cascade lasers operating in continuous-wave mode above 70℃ at 4.6m[J]. Applied Physics Letters, 2013, 103(4):041121.
[11] Faist J. Quantum Cascade Lasers[M]. Oxford:OUP Oxford, 2013.
[12] Lyakh A, Patel C K N, Tsvid E, et al. Progress in high-power continuous-wave quantum cascade lasers[J]. Applied Optics, 2017, 56(31):H15.
[13] Bai Y, Darvish S, Slivken S, et al. Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power[J]. Applied Physics Letters, 2008, 92(10):101105.
[14] Bai Y, Slivken S, Darvish S R, et al. Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency[J]. Applied Physics Letters, 2008, 93(2):021103.
[15] Razeghi M, Slivken S, Bai Y, et al. High power quantum cascade lasers[J]. New Journal of Physics, 2009, 11(12):125017.
[16] Bai Y, Slivken S, Darvish S R, et al. High power broad area quantum cascade lasers[J]. Applied Physics Letters, 2009, 95(22):221104.
[17] Bai Y, Bandyopadhyay N, Tsao S, et al. Highly temperature insensitive quantum cascade lasers[J]. Applied Physics Letters, 2010, 97(25):251104.
[18] Lyakh A, Maulini R, Tsekoun A, et al. 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach[J]. Applied Physics Letters, 2009, 95(14):141113.
[19] Lyakh A, Pflugl C, Diehl L, et al. 1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6m[J]. Applied Physics Letters, 2008, 92(11):111110.
[20] Lyakh A, Maulini R, Tsekoun A, et al. Tapered 4.7m quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power[J]. Optics Express, 2012, 20(4):4382-4388.
[21] Lyakh A, Maulini R, Tsekoun A, et al. Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency[J]. Optics Express, 2012, 20(22):24272-24279.
[22] Maulini R, Lyakh A, Tsekoun A, et al. ~7.1m quantum cascade lasers with 19% wall-plug efficiency at room temperature[J]. Optics Express, 2011, 19(18):17203-17211.
[23] Lyakh A, Suttinger M, Go R, et al. 5.6m quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28%[J]. Applied Physics Letters, 2016, 109(12):121109.
[24] Lu Q Y, Bai Y, Bandyopadhyay N, et al. 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 2011, 98(18):181106.
[25] Liu Yinghui, Zhang Jinchuan, Jiang Jianmin, et al. Development of surface grating distributed feedback quantum cascade laser for high output power and low threshold current density[J]. Chinese Physics Letters, 2015, 32(2):024202.
[26] Zhang J, Liu F, Tan S, et al. High-performance uncooled distributed-feedback quantum cascade laser without lateral regrowth[J]. Applied Physics Letters, 2012, 100(11):112105.
[27] Zhang J, Liu F, Yao D, et al. High power buried sampled grating distributed feedback quantum cascade lasers[J]. Journal of Applied Physics, 2013, 113(15):153101.
[28] Slivken S, Bandyopadhyay N, Tsao S, et al. Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature[J]. Applied Physics Letters, 2012, 100(26):261112.
[29] Lyakh A, Zory P, D'Souza M, et al. Substrate-emitting, distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 2007, 91(18):181116.
[30] Zhang J C, Yao D Y, Zhuo N, et al. Directional collimation of substrate emitting quantum cascade laser by nanopores arrays[J]. Applied Physics Letters, 2014, 104(5):052109.
[31] Cheng F M, Zhang J C, Jia Z W, et al. High power substrate-emitting quantum cascade laser with a symmetric mode[J]. IEEE Photonics Technology Letters, 2017, 29(22):1994-1997.
[32] Zhao Y, Yan F, Zhang J, et al. Broad area quantum cascade lasers operating in pulsed mode above 100℃ ~4.7m[J]. Journal of Semiconductors, 2017, 38(7):74-77.
[33] Botez D, Scifres D R. Diode Laser Arrays Vol. 14[M]. Cambridge:Cambridge University Press, 2005.
[34] Kirch J D, Chang C C, Boyle C, et al. 5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers[J]. Applied Physics Letters, 2015, 106(6):061113.
[35] Lyakh A, Maulini R, Tsekoun A, et al. Continuous wave operation of buried heterostructure 4.6 m quantum cascade laser Y-junctions and tree arrays[J]. Optics Express, 2014, 22(1):1203-1208.
[36] Leger J R. Lateral mode control of an AlGaAs laser array in a Talbot cavity[J]. Applied Physics Letters, 1989, 55(4):334-336.
[37] Wang L, Zhang J, Jia Z, et al. Phase-locked array of quantum cascade lasers with an integrated Talbot cavity[J]. Optics Express, 2016, 24(26):30275-30281.
[38] Jia Z, Wang L, Zhang J, et al. Phase-locked array of quantum cascade lasers with an intracavity spatial filter[J]. Applied Physics Letters, 2017, 111(6):061108.
[39] Heydari D, Bai Y, Bandyopadhyay N, et al. High brightness angled cavity quantum cascade lasers[J]. Applied Physics Letters, 2015, 106(9):941.
[40] Sergachev I, Maulini R, Bismuto A, et al. Gain-guided broad area quantum cascade lasers emitting 23.5 W peak power at room temperature[J]. Optics Express, 2016, 24(17):19063-19071.
[41] Paiella R, Martini R, Capasso F, et al. High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers[J]. Applied Physics Letters, 2001, 79(16):2526-2528.
[42] Calvar A, Amanti M, Renaudat St-Jean M, et al. High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line[J]. Applied Physics Letters, 2013, 102(18):181114.
[43] Hinkov B, Hugi A, Beck M, et al. Rf-modulation of mid-infrared distributed feedback quantum cascade lasers[J]. Optics Express, 2016, 24(4):3294-3312.
[44] Blaser S, Hofstetter D, Beck M, et al. Free-space optical data link using Peltier-cooled quantum cascade laser[J]. Electronics Letters, 2001, 37(12):778-780.
[45] Martini R, Paiella R, Gmachl C, et al. High-speed digital data transmission using mid-infrared quantum cascade lasers[J]. Electronics Letters, 2001, 37(21):1290-1292.
[46] Liu C W, Zhai S Q, Zhang J C, et al. Free-space communication based on quantum cascade laser[J]. Journal of Semiconductors, 2015, 36(9):094009.
[47] Pang X, Ozolins O, Schatz R, et al. Gigabit free-space multi-level signal transmission with a mid-infrared quantum cascade laser operating at room temperature[J]. Optics Letters, 2017, 42(18):3646-3649.
[48] Luzhanskiy E, Choa F S, Merritt S, et al. Low size, weight and power concept for mid-wave infrared optical communication transceivers based on Quantum Cascade Lasers.GSFC-E-DAA-TN27691[R/OL].[2015-11-20].https://ntrs.nasa.gov/search.jsp?R=20150021900,2015.
[49] Villares G, Hugi A, Blaser S, et al. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs[J]. Nature Communications, 2014, 5:5192.
[50] Villares G, Wolf J, Kazakov D, et al. On-chip dual-comb based on quantum cascade laser frequency combs[J]. Applied Physics Letters, 2015, 107(25):251104.
[51] Jouy P, Wolf J M, Bidaux Y, et al. Dual comb operation of ~8.2m quantum cascade laser frequency comb with 1 W optical power[J]. Applied Physics Letters, 2017, 111(14):141102.