[1] Takenaga Katsuhiro, Tanigawa Shoji, Guan Ning, et al. Reduction of crosstalk by quasi-homogeneous solid multi-core fiber[C]//Optical Fiber Communication Conference, 2010:OWK7.
[2] Gao Song, Liu Yan, Chen Runqiu, et al. Study on mode multiplexing used in space-division multiplexing[J]. Laser and Infrared, 2014, 44(4):424-428. (in Chinese)
[3] Chen Wei, Yuan Jian, He Zuowei, et al. The research progress of high-end optical fiber technologies for large capacity communication[J]. Study on Optical Communications, 2017, 44(1):27-29. (in Chinese)
[4] Chandrasekhar S, Gnauck A H, Liu Xiang, et al. WDM/SDM transmission of 10128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40, 320 kmb/s/Hz[J]. Optics Express, 2012, 20(2):706-711.
[5] Chen H, Van Uden R, Okonkwo C, et al. Compact spatial multiplexers for mode division multiplexing[J]. Optics Express, 2014, 22(26):31582-31594.
[6] Takenaga Katsuhiro. Reduction of crosstalk by trench-assisted multi-core fiber[C]//Optical Fiber Communication Conference, 2011:OWJ4.
[7] Saitoh Kunimasa, Matsuo Shoichiro. Multicore fiber technology[J]. Journal of Lightwave Technology, 2016, 34(1):55-66.
[8] Zheng Siwen, Lin Zhen, Ren Guobin, et al. Design and analysis of novel multi-core dual-mode large-mode-area optical fiber[J]. Acta Physica Sinica, 2013, 62(4):044224. (in Chinese)郑斯文, 林桢, 任国斌, 等. 一种新型多芯-双模-大模场面积光纤的设计和分析[J]. 物理学报, 2013, 62(4):044224.
[9] Lin Zhen, Zheng Siwen, Ren Guobin, et al. Characterization and comparison of 7-core and 19-core large-mode-area few-mode fiber[J]. Acta Physica Sinica, 2013, 62(6):064214. (in Chinese)林桢, 郑斯文, 任国斌, 等. 七芯及十九芯大模场少模光纤的特性研究和比对分析[J]. 物理学报, 2013, 62(6):064214.
[10] Takenaga Katsuhiro, Arakawa Yoko, Sasaki Yusuke, et al. A large effective area multi-core fiber with an optimized cladding thickness[J]. Optics Express, 2011, 19(26):B543-B550.
[11] Le Noane G, Boscher D, Grosso P, et al. Ultra high density cables using a new concept of bunched multicore monomode fibers:A key for the future FTTH networks[C]//Proceedings of the 43rd International Wire Cable Symposium (IWCS), 1994:203-210.
[12] Zhu B, Taunay T F, Yan M F, et al. Seven-core multicore fiber transmissions for passive optical network[J]. Optics Express, 2010, 18(11):11117-11122.
[13] Liu Xiang, Chandrasekhar S, Chen X, et al. 1.12-Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space-division multiplexed transmission with 60-b/s/Hz aggregate spectral efficiency.[J]. Optics Express, 2011, 19(26):B958-B964.
[14] Zhu B, Taunay T F, Fishteyn M, et al. 112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber[J]. Optics Express, 2011, 19(17):16665-16671.
[15] Hayashi Tetsuya, Taru Toshiki, Shimakawa Osamu, et al. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber[J]. Optics Express, 2011, 19(17):16576-16592.
[16] Igarashi Koji, Takeshima Koki, Tsuritani Takehiro, et al. 110.9-Tbit/s SDM transmission over 6,370 km using a full C-band seven-core EDFA[J]. Optics Express, 2013, 21(15):18053-18060.
[17] Kobayashi T, Takara H, Sano A, et al. 2344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation[C]//39th European Conference and Exhibition on Optical Communications (ECOC 2013), 2013:PD3E4.
[18] Sano Akihide, Takara Hidehiko, Kobayashi Takayuki, et al. 409-Tb/s+409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving[J]. Optics Express, 2013, 21(14):16777-16783.
[19] Turukhin A, Sinkin O V, Batshon H G, et al. 105.1 Tb/s power-efficient transmission over 14350 km using a 12-core fiber[C]//Optical Fiber Communications Conference and Exhibition, 2016:Th4C.1.
[20] Mizuno T, Shibahara K, Ono H, et al. 32-core dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line[C]//Optical Fiber Communications Conference Postdeadline Papers, 2016:Th5C.3.
[21] Chen Heming, Zhuang Yuyang. Research progess on key technologies in mode division multiplexing system[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 2018, 38(1):37-44. (in Chinese)陈鹤鸣, 庄煜阳. 模分复用系统关键技术研究进展[J]. 南京邮电大学学报(自然科学版), 2018, 38(1):37-44.
[22] Sakaguchi J, Awaji Y, Imamura K, et al. 19-core fiber transmission of 19100172-Gb/s SDM-WDM-PDM-QPSK signals at 305 Tb/s[C]//National Fiber Optic Engineers Conference, 2011:PDPC2.
[23] Ryf Roland, Randel Sebastian, Gnauck Alan H, et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 66 MIMO processing[J]. Journal of Lightwave Technology, 2012, 30(4):521-531.
[24] Ryf Roland, Fontaine Nicolas K, Mestre Miquel A, et al. 1212 MIMO transmission over 130-km few-mode fiber[J]. Frontier in Optics, 2012:FW6C.4.
[25] Sleiffer Vincent A, Leoni Paolo, Jung Yongmin, et al. Ultra-high capacity transmission with few-mode silica and hollow-core photonic bandgap fibers[C]//Optical Fiber Communications Conference and Exhibition, 2014:Tu2J.3.
[26] Ren Fang, Yu Jinyi, Li Juhao, et al. Experimental demonstration of 3-mode MDM-PON transmission over 7.4-km low-mode-crosstalk FMF[C]//Optical Fiber Communications Conference and Exhibition, 2016:W2A.58.
[27] Matsuo Shoichiro, Takenaga Katsuhiro, Sasaki Yusuke, et al. High-spatial-multiplicity multicore fibers for future dense space-division-multiplexing systems[J]. Journal of Lightwave Technology, 2016, 34(6):1464-1475.
[28] Pepeljugoski P, Doany F, Kuchta D M, et al. Connector performance analysis for D-shaped multi-core multi mode fiber[C]//Optical Fiber Communications Conference and Exhibition, 2014:Th4J.4.
[29] Nakazawa M. Ultrahigh spectral efficiency systems-pushing the limits of multi-level modulation, multi-core fiber, and multi-mode control[C]//Optical Fibre Technology, OptoElectronics and Communication Conference and Australian Conference on, 2014:597-599.
[30] Igarashi Koji, Igarashi Koji, Igarashi Koji. Ultra-high capacity transmission based on ultra-dense SDM/WDM techniques[C]//Asia Communications and Photonics Conference, 2016:AF1D.3.
[31] Chi Nan, Zhang Junwen, Shao Yufeng. Theoretical and simulation analysis of a novel multiple-input multiple-output scheme over multimode fiber links with dual restricted launch techniques[J]. Optical Engineering, 2012, 51(6):5002.
[32] Tsuchida Y, Maeda K, Sugizaki R. Multicore EDFA for space division multiplexing[C]//Photonics Conference, 2014:269-270.
[33] Kanno Atsushi, Sakaguchi Jun, Watanabe Masayuki, et al. Space division multiplexed transmission of 109-Tb/s data signals using homogeneous seven-core fiber[J]. Journal of Lightwave Technology, 2012, 30(4):658-665.
[34] Takara H, Ono H, Abe Y, et al. 1000-km 7-core fiber transmission of 1096-Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber[J]. Optics Express, 2012, 20(9):10100-10105.
[35] Sakaguchi J, Klaus W, Mendinueta J D, et al. Realizing a 36-core, 3-mode fiber with 108 spatial channels[C]//Optical Fiber Communications Conference and Exhibition, 2015:Th5C.2.
[36] Soma D, Igarashi K, Wakayama Y, et al. 2.05 Peta-bit/s super-Nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band[C]//European Conference on Optical Communication (ECOC), 2015:7341686.
[37] Qi Yanhui, Sun Jiang, Kang Zexin, et al. Low-threshold wavelength-switchable fiber laser based on few-mode fiber Bragg grating[J]. Optical Fiber Technology, 2016, 29:70-73.
[38] Qi Yanhui, Kang Zexin, Sun Jiang, et al. Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure[J]. Optics Laser Technology, 2016, 81:26-32.
[39] Zheng Jingjing, Pei Li, Ning Tigang, et al. Matching optimization for SFS-structured interferometers with step-index fibers[J]. Optics Express, 2018, 26(7):9182-9193.
[40] Cheo P K, Liu A, King G G. A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array[J]. IEEE Photonics Technology Letters, 2001, 13(5):439-441.
[41] Michaille L, Bennett C R, Taylor D M, et al. Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area[J]. Optics Letters, 2005, 30(13):1668-1670.
[42] Michaille L, Bennett C R, Taylor D M, et al. Multicore photonic crystal fiber lasers for high power/energy applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2):328-336.
[43] Prudenzano F, Mescia L, Di Tommaso A, et al. Design and refinement of rare earth doped multicore fiber lasers[J]. Optical Materials, 2013, 35(11):1941-1946.
[44] Rigaud P, Kermene V, Simos C, et al. Dual-wavelength synchronous ultrashort pulses from a mode-locked Yb-doped multicore fiber laser with spatially dispersed gain[J]. Optics Express, 2015, 23(19):25308-25315.
[45] Ji Junhua, Raghuraman Sidharthan, Huang Xiaosheng, et al. 115 W large-mode-area multi-core fiber laser with all solid structure[C]//Conference on Lasers and Electro-Optics, 2018:STu3K.5.
[46] Huo Yanming, Cheo Peter K, King George G. Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier[J]. Optics Express, 2004, 12(25):6230-6239.
[47] Fang Xiaohui, Hu Minglie, Liu Bowen, et al. Hundreds of megawatts peak power multi-core photonic crystal fiber laser amplifier[J]. Chinese Joural of Lasers, 2010, 37(9):2366-2370. (in Chinese)方晓惠, 胡明列, 刘博文, 等. 百兆瓦峰值功率的多芯光子晶体光纤飞秒激光放大系统[J]. 中国激光, 2010, 37(9):2366-2370.
[48] Jain Saurabh, Castro Carlos, Jung Yongmin, et al. 32-core erbium/ytterbium-doped multicore fiber amplifier for next generation space-division multiplexed transmission system[J]. Optics Express, 2017, 25(26):32887-32896.
[49] Prevost F, Lombard L, Primot J, et al. Coherent beam combining of a narrow-linewidth long-pulse Er3+-doped multicore fiber amplifier[J]. Optics Express, 2017, 25(9):9528-9534.
[50] Klenke A, Mller M, Stark H, et al. Coherently combined 16-channel multicore fiber laser system[J]. Optics Letters, 2018, 43(7):1519-1522.
[51] Zhao Zhiyong, Soto Marcelo A, Tang Ming, et al. Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers[C]//Advanced Photonics, 2016:SeM4D.4.
[52] Zhao Z, Soto M A, Tang M, et al. Distributed shape sensing using Brillouin scattering in multi-core fibers[J]. Opt Express, 2016, 24(22):25211-25223.
[53] Westbrook Paul S, Kremp Tristan, Feder Kenneth S, et al. Continuous multicore optical fiber grating arrays for distributed sensing applications[J]. Journal of Lightwave Technology, 2017, 35(6):1248-1252.
[54] Schlzgen Axel, Van Newkirk Amy, Antonio-Lopez Jose Enrique, et al. Fiber optic sensors based on strongly coupled multicore fiber[C]//Advanced Photonics, 2017:SeW1E.1.
[55] Van Newkirk Amy, Sanjabi Eznaveh Zeinab, Antonio-Lopez Enrique, et al. High temperature sensor based on supermode interference in multicore fiber[C]//CLEO, 2014:SM2N.7.
[56] Zhang Hailiang, Wu Zhifang, Shum Perry Ping, et al. Highly sensitive strain sensor based on helical structure in multicore fiber[C]//Conference on Lasers and Electro-Optics, 2016:SM2P.3.
[57] Van Newkirk Amy, Antonio-Lopez Enrique, Salceda-Delgado Guillermo, et al. Optimization of multicore fiber for high-temperature sensing[J]. Optics Letters, 2014, 39(16):4812-4815.
[58] Villatoro Joel, Antoniolopez Enrique, Zubia Joseba, et al. Interferometer based on strongly coupled multi-core optical fiber for accurate vibration sensing[J]. Optics Express, 2017, 25(21):25734.
[59] Li Chao, Ning Tigang, Zhang Chan, et al. All-fiber multipath Mach-Zehnder interferometer based on a four-core fiber for sensing applications[J]. Sensors and Actuators A:Physical, 2016, 248:148-154.
[60] Li Chao, Ning Tigang, Li Jing, et al. Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating.[J]. Optics Laser Technology, 2017, 90:179-184.
[61] Kumar Arun, Goel Nitin K, Varshney R K. Studies on a few-mode fiber-optic strain sensor based on LP01-LP02 mode interference[J]. Journal of Lightwave Technology, 2001, 19(3):358.
[62] Li An, Wang Yifei, Hu Qian, et al. Few-mode fiber based optical sensors[J]. Optics Express, 2015, 23(2):1139-1150.
[63] Li An, Wang Yifei, Fang Jian, et al. Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination.[J]. Optics Letters, 2015, 40(7):1488-1491.
[64] Weng Yi, Ip Ezra, Pan Zhongqi, et al. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers[J]. Optics Express, 2015, 23(7):9024-9039.
[65] Yang Hangzhou, Ali M M, Islam M R, et al. Cladless few mode fiber grating sensor for simultaneous refractive index and temperature measurement[J]. Sensors and Actuators A:Physical, 2015, 228:62-68.
[66] Sun B, Fang F, Zhang Z, et al. High-sensitivity and low-temperature magnetic field sensor based on tapered two-mode fiber interference[J]. Optics Letters, 2018, 43(6):1311-1314.
[67] Lu Chenxu, Su Juan, Dong Xiaopeng, et al. Simultaneous measurement of strain and temperature with a few-mode fibre-based sensor[J]. Journal of Lightwave Technology, 2018, 36(13):2796-2802.