[1] Yang Z, Li C, Xu S, et al. Single-Frequency Fiber Lasers [M]//Optical and Fiber Communications Reports (OFCR, volume 8). Singapore: Springer Nature Singapore Pte Ltd., 2019.
[2] Fu S, Shi W, Feng Y, et al. Review of recent progress on single-frequency fiber lasers [J]. Journal of Optical Society of America B, 2017, 34: A49-A62. doi:  10.1364/JOSAB.34.000A49
[3] Yang C, Cen X, Xu S, et al. Research progress of single-frequency fiber laser [J]. Acta Optica Sinica, 2021, 41(1): 0114002. (in Chinese) doi:  10.3788/AOS202141.0114002
[4] Ma P, Chang H, Ma Y, et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array [J]. Optics & Laser Technology, 2021, 140: 107016.
[5] Bode N, Meylahn F, Willke B. Sequential high power laser amplifiers for gravitational wave detection [J]. Optics Express, 2020, 28: 29469-29478. doi:  10.1364/OE.401826
[6] Vercesi V, Onori D, Laghezza F, et al. Frequency-agile dual-frequency lidar for integrated coherent radar-lidar architectures [J]. Optics Letters, 2015, 40: 1358-1361. doi:  10.1364/OL.40.001358
[7] Ma Y, Wang X, Leng J, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique [J]. Optics Letters, 2011, 36: 951-953. doi:  10.1364/OL.36.000951
[8] Castelvecchi Davide. Gravitational-wave observatory LIGO set to double its detecting power [J]. Nature, 2019, 566: 305. doi:  10.1038/d41586-019-00573-4
[9] Li Z, Duan H, Huang X, et al. Design and performance test of the spaceborne laser in the TianQin-1 mission [J]. Optics & Laser Technology, 2021, 141: 107155.
[10] Wang J, Hou Y, Zhang Q, et al. High-power, high signal-to-noise ratio single-frequency 1 µm Brillouin all-fiber laser [J]. Optics Express, 2015, 23: 28978-28984. doi:  10.1364/OE.23.028978
[11] Chen M, Meng Z, Wang J, et al. Strong linewidth reduction by compact Brillouin/erbium fiber laser [J]. IEEE Photonics Journal, 2014, 6: 1-8.
[12] Shi C, Sheng Q, Fu S, et al. Power scaling and spectral linewidth suppression of hybrid Brillouin/thulium fiber laser [J]. Optics Express, 2020, 28: 2948-2955. doi:  10.1364/OE.379013
[13] Gu J, Yang Y, Liu M, et al. A switchable and stable single-longitudinal-mode, dual-wavelength erbium-doped fiber laser assisted by Rayleigh backscattering in tapered fiber [J]. Journal of Applied Physics, 2015, 118: 103107. doi:  10.1063/1.4930054
[14] Zhu T, Zhang B, Shi L, et al. Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering [J]. Optics Express, 2016, 24: 1324. doi:  10.1364/OE.24.001324
[15] Shawki H, Kotb H, Khalil A. Single-longitudinal-mode broadband tunable random laser [J]. Optics Letters, 2017, 42: 3247. doi:  10.1364/OL.42.003247
[16] Wang Q, Song H, Wang X, et al. Experiments and analysis of tunable monolithic 1-m single-frequency fiber lasers with loop mirror filters [J]. Optics Communications, 2018, 410: 884. doi:  10.1016/j.optcom.2017.11.058
[17] Wang K, Lu B, Qi X, et al. Wavelength-tunable single-frequency ytterbium-doped fiber laser based on a double-circulator interferometer [J]. Laser Physics Letters, 2019, 16: 015104. doi:  10.1088/1612-202X/aaf175
[18] Yin T, Song Y, Jiang X, et al. 400 mW narrow linewidth single-frequency fiber ring cavity laser in 2 μm waveband [J]. Optics Express, 2019, 27: 15794. doi:  10.1364/OE.27.015794
[19] Lim S, Yoo J, Kim S. Widely tunable watt-level single-frequency Tm-doped fiber ring laser as pump for Mid-IR frequency generation [J]. IEEE Photonics Journal, 2016, 8: 1502006.
[20] Wang K, Wen Z, Chen H, et al. Single-frequency all-polarization-maintaining ytterbium-doped bidirectional fiber laser [J]. Optics Letters, 2021, 46: 404. doi:  10.1364/OL.414328
[21] Yin B, Feng S, Liu Z, et al. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter [J]. Optics Express, 2014, 22: 22528. doi:  10.1364/OE.22.022528
[22] Yin B, Liu Z, Feng S, et al. Stable single-polarization single-longitudinal-mode linear cavity erbium-doped fiber laser based on structured chirped fiber Bragg grating [J]. Applied Optics, 2015, 54: 6. doi:  10.1364/AO.54.000006
[23] Yan F, Peng W, Liu S, et al. Dual-wavelength single-longitudinal-mode Tm-doped fiber laser using PM-CMFBG [J]. IEEE Photonics Technology Letters, 2015, 27: 951. doi:  10.1109/LPT.2015.2403842
[24] Wen Q, Sun Z, Gan Y, et al. Sub-kilohertz linewidth fiber laser by using Bragg grating filters [J]. Applied Optics, 2021, 60: 4299. doi:  10.1364/AO.421214
[25] Lu B, Yuan L, Qi X, et al. MoS2 saturable absorber for single frequency oscillation of highly Yb-doped fiber laser [J]. Chinese Optics Letters, 2016, 14: 071404.
[26] Liu X, Ji L, Zhu F, et al. Linear-cavity-based single frequency fiber laser with a loop mirror and Ti2CTx quantum dots [J]. Optical Materials, 2021, 122: 111686. doi:  10.1016/j.optmat.2021.111686
[27] Wei Z, Chen S, Ding J, et al. Recent advance in tunable single-frequency fiber laser based on two-dimensional materials [J]. Frontiers of Physics, 2021, 8: 580602. doi:  10.3389/fphy.2020.580602
[28] Fu P, Feng X, Lu B, et al. Switchable dual-wavelength SLM narrow linewidth fiber laser based on nonlinear amplifying loop mirror [J]. Optics & Laser Technology, 2018, 98: 56.
[29] Xu S, Yang Z, Zhang W, et al. 400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser [J]. Optics Letters, 2011, 36: 3708. doi:  10.1364/OL.36.003708
[30] Hofmann P, Voigtlander C, Nolte S, et al. 550-mW output power from a narrow linewidth all-phosphate fiber laser [J]. Journal of Lightwave Technology, 2013, 31: 756. doi:  10.1109/JLT.2012.2233392
[31] Guan X, Yang C, Qiao T, et al. High-efficiency sub-watt in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1950 nm [J]. Optics Express, 2018, 26: 6817. doi:  10.1364/OE.26.006817
[32] Fu S, Zhu X, Zong J, et al. Diode-pumped 1.15 W linearly polarized single-frequency Yb3+-doped phosphate fiber laser [J]. Optics Express, 2021, 29: 30637. doi:  10.1364/OE.438787
[33] Zhang L, Zhang J, Sheng Q, et al. Watt-level 1.7-μm single-frequency thulium-doped fiber oscillator [J]. Optics Express, 2021, 29: 27048. doi:  10.1364/OE.434001
[34] Zhang J, Sheng Q, Zhang L, et al. 2.56 W single-frequency all-fiber oscillator at 1720 nm [J]. Advanced Photonics Research, 2022, 3(2): 2100256. doi:  https://doi.org/10.1002/adpr.202100256
[35] Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power [J]. Optics Letters, 2014, 39: 666. doi:  10.1364/OL.39.000666
[36] Huang L, Wu H, Li R, et al. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier [J]. Optics Letters, 2017, 41: 1.
[37] Lai W, Ma P, Liu W, et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber [J]. Optics Express, 2020, 28: 20908. doi:  10.1364/OE.395619
[38] An Y, Pan Z, Yang H, et al. 400-W single-mode single-frequency laser output from homemade tapered fiber [J]. Acta Physica Sinica, 2021, 70(20): 204024. (in Chinese) doi:  10.7498/aps.70.20210682
[39] Shi C, Fu S, Deng X, et al. 435 W single-frequency all-fiber amplifier at 1064 nm based on cascaded hybrid active fibers [J]. Optics Communications, 2022, 502: 127428. doi:  10.1016/j.optcom.2021.127428
[40] Xue M, Gao C, Niu L, et al. A 51.3 W, sub-kHz-linewidth linearly polarized all-fiber laser at 1560 nm [J]. Laser Physics, 2020, 30: 035104. doi:  10.1088/1555-6611/ab67ce
[41] Guan X, Zhao Q, Lin W, et al. High-efficiency and high-power single-frequency fiber laser at 1.6 μm based on cascaded energy-transfer pumping [J]. Photonics Research, 2020, 8: 414. doi:  10.1364/PRJ.383174
[42] Wang X, Jin X, Wu W, et al. 310-W single frequency Tm-doped all-Fiber MOPA [J]. IEEE Photonics Technology Letters, 2015, 27: 677. doi:  10.1109/LPT.2015.2390253
[43] Guan X, Yang C, Gu Q, et al. 316 W high-brightness narrow-linewidth linearly-polarized all-fiber single frequency-laser at 1950 nm [J]. Applied Physics Express, 2021, 14: 112004. doi:  10.35848/1882-0786/ac2e9b
[44] Yang C, Zhao Q, Feng Z, et al. 1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser [J]. Optics Express, 2016, 24: 29794. doi:  10.1364/OE.24.029794
[45] Honzatko P, Baravets Y, Myakalwar A. Single-frequency fiber laser based on a fiber ring resonator filter tunable in a broad range from 1023 nm to 1107 nm [J]. Optics Letters, 2018, 43: 1339. doi:  10.1364/OL.43.001339
[46] Tao Y, Zhang S, Jiang M, et al. High power and high efficiency single-frequency 1030 nm DFB fiber laser [J]. Optics & Laser Technology, 2022, 145: 107519.
[47] Tao Y, Jiang M, Li C, et al. Low threshold 1150 nm single-polarization single-frequency Yb-doped DFB fiber laser [J]. Optics Letters, 2021, 46: 3705. doi:  10.1364/OL.433082
[48] Huang L, Yang C, Tan T, et al. Sub-kHz-linewidth wavelength-tunable single-frequency ring-cavity fiber laser for C- and L-band operation [J]. Journal of Lightwave Technology, 2021, 39: 4794. doi:  10.1109/JLT.2021.3074824
[49] Walasik W, Traoré D, Amavigan A, et al. 2-μm narrow linewidth all-fiber DFB fiber Bragg grating lasers for Ho-and Tm-doped fiber-amplifier applications [J]. Journal of Lightwave Technology, 2021, 39: 5096. doi:  10.1109/JLT.2021.3079235
[50] Cen X, Guan X, Yang C, et al. Short-wavelength, in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1.7 μm [J]. IEEE Photonics Technology Letters, 2021, 33: 350. doi:  10.1109/LPT.2021.3056047
[51] Mollaee M, Zhu X, Zong J, et al. Single-frequency blue laser fiber amplifier [J]. Optics Letters, 2018, 43: 423. doi:  10.1364/OL.43.000423
[52] Fang Q, Xu Y, Fu S, et al. Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930 nm [J]. Optics Letters, 2016, 41: 1829. doi:  10.1364/OL.41.001829
[53] Fu S, Zhu X, Zong J, et al. Single-frequency Nd3+-doped phosphate fiber laser at 915 nm [J]. Journal of Lightwave Technology, 2021, 39: 1808. doi:  10.1109/JLT.2020.3043166
[54] Zhu X, Zong J, Miller A, et al. Single-frequency Ho3+-doped ZBLAN fiber laser at 1200 nm [J]. Optics Letters, 2012, 37: 4185. doi:  10.1364/OL.37.004185
[55] Bernier M, Michaud-Belleau V, Levasseur S, et al. All-fiber DFB laser operating at 2.8 μm [J]. Optics Letters, 2015, 40: 81. doi:  10.1364/OL.40.000081
[56] Hudson D, Williams J, Withford J, et al. Single-frequency fiber laser operating at 2.9 μm [J]. Optics Letters, 2013, 38: 2388. doi:  10.1364/OL.38.002388
[57] Loranger S, Karpov V, Schinn G, et al. Single-frequency low-threshold linearly polarized DFB Raman fiber lasers [J]. Optics Letters, 2017, 42: 3864. doi:  10.1364/OL.42.003864
[58] Wu J, Zhu X, Wei H, et al. Power scalable 10 W 976 nm single-frequency linearly polarized laser source [J]. Optics Letters, 2018, 43: 951. doi:  10.1364/OL.43.000951
[59] Gouhier B, Guiraud G, Rota-Rodrigo S, et al. 25 W single-frequency, low noise fiber MOPA at 1120 nm [J]. Optics Letters, 2018, 43: 308. doi:  10.1364/OL.43.000308
[60] Gouhier B, Dixneuf C, Hilico A, et al. Low Intensity noise high-power tunable fiber-based laser around 1007 nm [J]. Journal of Lightwave Technology, 2019, 37: 3539. doi:  10.1109/JLT.2019.2917651
[61] Gouhier B, Rota-Rodrigo S, Guiraud G, et al. Low-noise single-frequency 50 W fiber laser operating at 1013 nm [J]. Laser Physics Letters, 2019, 16: 045103. doi:  10.1088/1612-202X/aafd20
[62] Yao B, Chen Q, Chen Y, et al. 280 mHz linewidth DBR fiber laser based on PDH frequency stabilization with ultrastable cavity [J]. Chinese Journal of Lasers, 2021, 48(5): 0501014. doi:  10.3788/CJL202148.0501014
[63] Zhao Q, Zhang Z, Wu B, et al. Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection [J]. Photonics Research, 2018, 6: 326. doi:  10.1364/PRJ.6.000326
[64] Zhao Q, Zhou K, Wu Z, et al. Near quantum-noise limited and absolute frequency stabilized 1083 nm single-frequency fiber laser [J]. Optics Letters, 2018, 43: 42. doi:  10.1364/OL.43.000042
[65] Qi Z, Yin T, Jiang X, et al. Narrow-linewidth high-efficiency single-frequency ytterbium-doped fiber laser with highly linear polarization at 1064 nm [J]. Applied Optics, 2021, 60: 2833. doi:  10.1364/AO.420430
[66] Hao L, Wang X, Jia K, et al. Narrow-linewidth single-polarization fiber laser using non-polarization optics [J]. Optics Letters, 2021, 46: 3769. doi:  10.1364/OL.434307
[67] Liu H, Lu Q, Wei S, et al. Long-term stable 850-Hz linewidth single-longitudinal-mode ring cavity fiber laser using polari-zation-maintaining fiber [J]. Applied Physics B, 2020, 126: 106.
[68] Yang C, Xu S, Chen D, et al. 52 W kHz-linewidth low-noise linearly-polarized all-fiber single-frequency MOPA laser [J]. Journal of Optics, 2016, 18: 055801. doi:  10.1088/2040-8978/18/5/055801
[69] Wellmann F, Steinke M, Meylahn F, et al. High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors [J]. Optics Express, 2019, 27: 28523. doi:  10.1364/OE.27.028523
[70] Dixneuf C, Guiraud G, Bardin Y, et al. Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm [J]. Optics Express, 2020, 28: 10960. doi:  10.1364/OE.385095
[71] Darwich D, Bardin Y, Goeppner M, et al. Ultralow-intensity noise, 10 W all-fiber single-frequency tunable laser system around 1550 nm [J]. Applied Optics, 2021, 60: 8550. doi:  10.1364/AO.435274
[72] Zhang Q, Hou Y, Wang X, et al. 5 W ultra-low-noise 2 µm single-frequency fiber laser for next-generation gravitational wave detectors [J]. Optics Letters, 2020, 45: 4911. doi:  10.1364/OL.402617
[73] Hou Y, Zhang Q, Qi S, et al. 1.5 μm polarization-maintaining dual-wavelength single-frequency distributed Bragg reflection fiber laser with 28 GHz stable frequency difference [J]. Optics Letters, 2018, 43: 1383. doi:  10.1364/OL.43.001383
[74] Budarnykh A, Vladimirskaya A, Lobach I, et al. Broad-range self-sweeping single-frequency linearly polarized Tm-doped fiber laser [J]. Optics Letters, 2018, 43: 5307. doi:  10.1364/OL.43.005307
[75] Kashirina E, Lobach I, and Kablukov S. Single-frequency self-sweeping Nd-doped fiber laser [J]. Optics Letters, 2019, 44: 2252. doi:  10.1364/OL.44.002252
[76] Li K, Deng H, Yang C, et al. Multi-wavelength, passively Q-switched, single-frequency fiber laser [J]. IEEE Photonics Technology Letters, 2019, 31: 1479. doi:  10.1109/LPT.2019.2933168
[77] Huang L, Guan Z, Yang C, et al. High-precision tunable single-frequency fiber laser at 1.5 μm based on self-injection locking [J]. IEEE Photonics Technology Letters, 2021, 34(12): 633-636. doi:  10.1109/LPT.2021.3090947
[78] Bai Z, Jin D, Ding J, et al. Brillouin laser power exceeds 20 W [J]. Chinese Journal of Lasers, 2021, 48(21): 2116003. (in Chinese)
[79] Guo Y, Xu M, Peng W, et al. Realization of a 101 W single-frequency continuous wave all-solid-state 1064 nm laser by means of mode self-reproduction [J]. Optics Letters, 2018, 43: 6017. doi:  10.1364/OL.43.006017
[80] Peng W, Jin P, Li F, et al. A review of the high-power all-solid-state single-frequency continuous-wave laser [J]. Micro-machines, 2021, 12: 1426. doi:  10.3390/mi12111426
[81] Schülzgen A, Li L, Temyanko V, et al. Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber [J]. Optics Express, 2006, 14: 7087. doi:  10.1364/OE.14.007087
[82] Tao Y, Jiang M, Liu L, et al. Single-polarization single-frequency Brillouin fiber laser emits near 5-W power at 1 μm [J]. Optics Letters, 2022, 47: 1742. doi:  10.1364/OL.454534
[83] Goodno G, Book L, Rothenberg J. Low-phase-noise, single-frequency, single-mode 608   W thulium fiber amplifier [J]. Optics Letters, 2009, 34: 1204. doi:  10.1364/OL.34.001204
[84] Huang L, Lai W, Ma P, et al. Tapered Yb-doped fiber enabled monolithic high-power linearly polarized single-frequency laser [J]. Optics Letters, 2020, 45: 4001. doi:  10.1364/OL.393051
[85] Otto H, Jauregui C, Stutzki F, et al. Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector [J]. Optics Express, 2013, 21: 17285. doi:  10.1364/OE.21.017285
[86] Jauregui C, Stihler C, Tünnermann A, et al. Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode instability threshold [J]. Optics Express, 2018, 26: 10691. doi:  10.1364/OE.26.010691
[87] Stihler C, Jauregui C, Kholaif S, et al. Intensity noise as a driver for transverse mode instability in fiber amplifiers [J]. PhotoniX, 2020, 1: 8. doi:  10.1186/s43074-020-00008-8
[88] Sincore A, Bradford J, Cook J, et al. High average power thulium-doped silica fiber lasers: Review of systems and concepts [J]. Journal of Selected Topics in Quantum Electronics, 2017, 24: 0901808.
[89] Creeden D, Johnson B, Setzler S, et al. Resonantly pumped Tm-doped fiber laser with >90% slope efficiency [J]. Optics Letters, 2014, 39: 470. doi:  10.1364/OL.39.000470
[90] Wang Y, Yang J, Huang C, et al. High power tandem-pumped thulium-doped fiber laser [J]. Optics Express, 2015, 23: 2991. doi:  10.1364/OE.23.002991
[91] Dianov E. Bismuth-doped optical fibers: A challenging active medium for near-IR lasers and optical amplifiers [J]. Light-Science & Applications, 2012, 1: e12.
[92] Thipparapu N, Wang Y, Umnikov A, et al. Bi-doped fiber amplifiers and lasers [Invited] [J]. Optical Materials Express, 2019, 9: 2446. doi:  10.1364/OME.9.002446
[93] Zhang L, Jiang H, Cui S, et al. Versatile Raman fiber laser for sodium laser guide star [J]. Laser & Photonics Reviews, 2014, 8: 889.
[94] Miao Y, Ma P, Liu W, et al. First demonstration of co-pumped single-frequency Raman fiber amplifier with spectral-broadening-free property enabled by ultra-low noise pumping [J]. IEEE Access, 2019, 6: 71988.
[95] Xu Y, Mak K, and Murdoch S. Multiwatt level output powers from a tunable fiber optical parametric oscillator [J]. Optics Letters, 2011, 36: 1966. doi:  10.1364/OL.36.001966
[96] Yang S, Cheung K, Zhou Y, et al. Tunable single-longitudinal-mode fiber optical parametric oscillator [J]. Optics Letters, 2010, 35: 481. doi:  10.1364/OL.35.000481
[97] Lim L, Abu Bakar M, and Mahdi M. Wavelength-tunable single longitudinal mode fiber optical parametric oscillator [J]. Optics Express, 2017, 25: 5501. doi:  10.1364/OE.25.005501
[98] Zou J, Li T, Dou Y, et al. Direct generation of watt-level yellow Dy3+-doped fiber laser [J]. Photonics Research, 2021, 9: 446. doi:  10.1364/PRJ.410913
[99] Lord M, Fortin V, Maes F, et al. 2.3 W monolithic fiber laser operating in the visible [J]. Optics Letters, 2021, 46: 2392. doi:  10.1364/OL.424765
[100] Fortin V, Jobin F, Larose M, et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm [J]. Optics Letters, 2019, 44: 491. doi:  10.1364/OL.44.000491
[101] Lemieux-Tanguay M, Fortin V, Boilard T, et al. 15 W monolithic fiber laser at 3.55 µm [J]. Optics Letters, 2022, 47: 289. doi:  10.1364/OL.446769
[102] Häfner S, Falke S, Grebing C, et al. 8 × 10−17 fractional laser frequency instability with a long room-temperature cavity [J]. Optics Letters, 2015, 40: 2112. doi:  10.1364/OL.40.002112
[103] Dahl K, Cebeci P, Fitzau O, et al. A new laser technology for LISA [C]//International Conference on Space Optics, 2018: 111800 C.
[104] Vahlbruch H, Wilken D, Mehmet M, et al. Laser power stabilization beyond the shot noise limit using squeezed light [J]. Physical Review Letters, 2018, 121: 173601. doi:  10.1103/PhysRevLett.121.173601
[105] Wang Y, Gao L, Zhang X, et al. Recent development of low noise laser for precision measurement (Invited) [J]. Infrared and Laser Engineering, 2020, 49(12): 20201073. (in Chinese) doi:  10.3788/IRLA20201073
[106] Popp A, Distler V, Jaksch K, et al. Quantum-limited measurements of intensity noise levels in Yb doped fiber amplifiers [J]. Applied Physics B, 2020, 126: 130.
[107] Tünnermann H, Neumann J, Kracht D, et al. Gain dynamics and refractive index changes in fiber amplifiers: a frequency domain approach [J]. Optics Express, 2012, 20: 13539. doi:  10.1364/OE.20.013539
[108] Tünnermann H, Neumann J, Kracht D, et al. Frequency resolved analysis of thermally induced refractive index changes in fiber amplifiers [J]. Optics Letters, 2012, 37: 3597. doi:  10.1364/OL.37.003597
[109] Zhao J, Guiraud G, Floissat F, et al. Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control [J]. Optics Express, 2017, 25: 357. doi:  10.1364/OE.25.000357
[110] Gierschke P, Jauregui C, Gottschall T, et al. Relative amplitude noise transfer function of an Yb3+-doped fiber amplifier chain [J]. Optics Express, 2019, 27: 17041. doi:  10.1364/OE.27.017041
[111] Zhao N, Li W, Li J, et al. Elimination of the photodarkening effect in an Yb-doped fiber laser with deuterium [J]. Journal of Lightwave Technology, 2019, 37: 3021. doi:  10.1109/JLT.2019.2909575
[112] Zhao N, Peng K, Li J, et al. Photodarkening effect suppression in Yb-doped fiber through the nanoporous glass phase-separation fabrication method [J]. Optical Materials Express, 2019, 9: 1085. doi:  10.1364/OME.9.001085
[113] Theeg T, Ottenhues C, Sayinc H, et al. Core-pumped single-frequency fiber amplifier with an output power of 158 W [J]. Optics Letters, 2016, 41: 9. doi:  10.1364/OL.41.000009
[114] Zhao J, Guiraud G, Pierre C, et al. High-power all-fiber ultra-low noise laser [J]. Applied Physics B, 2018, 124: 114.
[115] Wei L, Cleva F, Nary Man C. Coherently combined master oscillator fiber power amplifiers for Advanced Virgo [J]. Optics Letters, 2016, 41: 5817. doi:  10.1364/OL.41.005817
[116] Wellmann F, Bode N, Wessels P, et al. Low noise 400 W coherently combined single frequency laser beam for next generation gravitational wave detectors [J]. Optics Letters, 2021, 29: 10140.
[117] Ball G, Morey W, Glenn W. Standing-wave monomode erbium fiber laser [J]. IEEE Photonics Technology Letters, 1991, 3: 613. doi:  10.1109/68.87930