[1] Kubitza D, Becka M, Voith B, et al. Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59‐7939, an oral, direct factor Xa inhibitor [J]. Clinical Pharmacology & Therapeutics, 2005, 78(4): 412-21.
[2] Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS [J]. European Heart Journal, 2016, 37(38): 2893-962. doi:  10.1093/eurheartj/ehw210
[3] Maqsood M, Imran Hasan Khan M, Yameen M, et al. Use of oral rivaroxaban in cerebral venous thrombosis [J]. Journal of Drug Assessment, 2021, 10(1): 1-6. doi:  10.1080/21556660.2020.1838769
[4] Weinz C, Schwarz T, Kubitza D, et al. Metabolism and excretion of rivaroxaban, an oral, direct factor Xa inhibitor, in rats, dogs, and humans [J]. Drug Metabolism and Disposition, 2009, 37(5): 1056-1064. doi:  10.1124/dmd.108.025569
[5] Harenberg J, Du S, Wehling M, et al. Measurement of dabigatran, rivaroxaban and apixaban in samples of plasma, serum and urine, under real life conditions. An international study [J]. Clinical Chemistry and Laboratory Medicine (CCLM), 2016, 54(2): 275-283.
[6] Mueck W, Lensing A W A, Agnelli G, et al. Rivaroxaban: population pharmacokinetic analyses in patients treated for acute deep-vein thrombosis and exposure simulations in patients with atrial fibrillation treated for Stroke prevention [J]. Clinical Pharmacokinetics, 2011, 50(10): 675-686. doi:  10.2165/11595320-000000000-00000
[7] Shadvar K, Sadaghi P, Hamishekar H, et al. Efficacy of prothrombin complex concentrate for reversal of major bleeding due to rivaroxaban: A pilot randomized controlled trial [J]. Journal of Clinical Anesthesia, 2021, 68: 110093. doi:  10.1016/j.jclinane.2020.110093
[8] Mueck W, Stampfuss J, Kubitza D, et al. Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban [J]. Clinical Pharmacokinetics, 2014, 53(1): 1-16. doi:  10.1007/s40262-013-0100-7
[9] Plusquellic D F, Siegrist K, Heilweil E J, et al. Applications of terahertz spectroscopy in biosystems [J]. Chem Phys Chem, 2007, 8(17): 2412-2431. doi:  10.1002/cphc.200700332
[10] Cheng C, Zhu Z, Li S, et al. Broadband terahertz recognizing conformational characteristics of a significant neurotransmitter γ-aminobutyric acid [J]. RSC Advances, 2019, 9: 20240-20247. doi:  10.1039/C9RA02971K
[11] Li T, Ma H, Peng Y, et al. Gaussian numerical analysis and terahertz spectroscopic measurement of homocysteine [J]. Biomed Opt Express, 2018, 9(11): 5467-5476. doi:  10.1364/BOE.9.005467
[12] Zhu Z, Cheng C, Chang C, et al. Characteristic fingerprint spectrum of neurotransmitter norepinephrine with broadband terahertz time-domain spectroscopy [J]. Analyst, 2019, 144(8): 2504-2510. doi:  10.1039/C8AN02079E
[13] Zhao Z, Zheng X, Peng W, et al. Terahertz electromagnetically-induced transparency of self-complementary meta-molecules on Croatian checkerboard [J]. Scientific Reports, 2019, 9: 6205. doi:  10.1038/s41598-019-42038-8
[14] Resende G C, Ribeiro G A S, Silveira O J, et al. Origin of the complex Raman tensor elements in single-layer triclinic ReSe2 [J]. 2D Mater, 2021, 8(2): 025002.
[15] Abu Bakkar M, Nawaz H, Majeed M I, et al. Raman spectroscopy for the qualitative and quantitative analysis of solid dosage forms of Sitagliptin [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2021, 245: 118900. doi:  10.1016/j.saa.2020.118900
[16] Ryzhikova E, Ralbovsky N M, Sikirzhytski V, et al. Raman spectroscopy and machine learning for biomedical applications: Alzheimer's disease diagnosis based on the analysis of cerebrospinal fluid [J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2021, 248: 119188. doi:  10.1016/j.saa.2020.119188
[17] Hangyo M, Tani M, Nagashima T. Terahertz time-domain spectroscopy of solids: A review [J]. International Journal of Infrared and Millimeter Waves, 2005, 26(12): 1661-1690. doi:  10.1007/s10762-005-0288-1