[1] He Sailing, Li Shuo, Chen Xiang, et al. Application of hyperspectral imager and lidar in marine biological detection [J]. Infrared and Laser Engineering, 2021, 50(6): 20211033. (in Chinese) doi:  10.3788/IRLA20211033
[2] 李光福, 南钢洋, 潘冬阳, 等. 激光雷达测风系统信号采集处理研究[J]. 红外与激光工程, 2021, 50(S2): 188-194. doi:  10.3788/IRLA20210467

Li Guangfu, Nan Gangyang, Pan Dongyang, et al. Research on signal acquisition and processing of lidar wind measurement system [J]. Infrared and Laser Engineering, 2021, 50(S2): 20210467. (in Chinese) doi:  10.3788/IRLA20210467
[3] 狄慧鸽, 华灯鑫. 底层大气探测激光雷达国内研究现状与进展(特邀)[J]. 红外与激光工程, 2021, 50(03): 9-18. doi:  10.3788/IRLA20210032

Di Huige, Hua Dengxin. Research status and progress of Lidar for atmosphere in China (Invited) [J]. Infrared and Laser Engineering, 2021, 50(3): 20210032. (in Chinese) doi:  10.3788/IRLA20210032
[4] 鲁先洋, 李学彬, 秦武斌, 等. 微脉冲激光雷达反演气溶胶的水平分布[J]. 光学 精密工程, 2017, 25(7): 1697-1704. doi:  10.3788/OPE.20172507.1697

Lu Xianyang, Li Xuebin, Qin Wubin, et al. Retrieval of horizontal distribution of aerosol mass concentration by micro pulse lidar [J]. Optics and Precision Engineering, 2017, 25(7): 1697-1704. (in Chinese) doi:  10.3788/OPE.20172507.1697
[5] 伍锡如, 薛其威. 基于激光雷达的无人驾驶系统三维车辆检测[J]. 光学精密工程, 2022, 30(04): 489-497. doi:  10.37188/OPE.20223004.0489

Wu Xiru, Xue Qiwei. 3D vehicle detection for unmanned driving systerm based on lidar [J]. Optics and Precision Engineering, 2022, 30(4): 489-497. (in Chinese) doi:  10.37188/OPE.20223004.0489
[6] Zou Q, Sun Q, Chen L, et al. A comparative analysis of LIDAR SLAM-based indoor navigation for autonomous vehicles [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 6907-6921. doi:  10.1109/TITS.2021.3063477
[7] 徐俊杰, 卜令兵, 刘继桥, 等. 机载高光谱分辨率激光雷达探测大气气溶胶的研究[J]. 中国激光, 2020, 47(07): 411-420. doi:  10.3788/CJL202047.0710003

Xu Junjie, Bu Lingbing, Liu Jiqiao, et al. Study on airborne high spectral resolution lidar detecting optical properties and pollution of atmospheric aerosol [J]. Chinese Journal of Lasers, 2020, 47(7): 0710003. (in Chinese) doi:  10.3788/CJL202047.0710003
[8] 田晓敏, 刘东, 徐继伟, 等. 大气探测激光雷达技术综述[J]. 大气与环境光学学报, 2018, 13(5): 331-341. doi:  http://gk.hfcas.ac.cn/CN/Y2018/V13/I5/321

Tian Xiaomin, Liu Dong, Xu Jiwei, et al. Review of Lidar technology for atmosphere monitoring [J]. Journal of Atmospheric and Environment Optics, 2018, 13(5): 331-341. (in Chinese) doi:  http://gk.hfcas.ac.cn/CN/Y2018/V13/I5/321
[9] Ihor B. A combined diffraction and geometrical optics approach for LIDAR overlap function computation [J]. Optics and lasers in Engineering, 2009, 47(7-8): 855-859. doi:  10.1016/j.optlaseng.2009.01.011
[10] Ogawa T, Wanielik G. TOF-LIDAR signal processing using the CFAR detector [J]. Advances in Radio Science, 2016, 14: 161-167. doi:  10.5194/ars-14-161-2016
[11] Li Y, Duthon P, Colomb M, et al. What happens to a ToF Lidar in fog? [J]. IEEE Transactions on Intelligent Transpor-tation Systems, 2020, 22(11): 6670-6681. doi:  10.1109/TITS.2020.2998077
[12] 舒嵘, 徐之海. 激光雷达成像原理与运动误差补偿方法[M]. 北京: 科学出版社, 2014: 8.

Shu Rong, Xu Zhihai. Imaging Principle and Motion Error Compensation Method of Lidar [M]. Beijing: Science Press, 2014: 8. (in Chinese)
[13] 张寅超, 王琛, 陈和, 等. 基于视场权重的激光雷达几何因子计算方法[J]. 光子学报, 2020, 49(10): 59-66. doi:  10.3788/gzxb20204910.1001001

Zhang Yinchao, Wang Chen, Chen He, et al. Calculation method of lidar geometric factor based on field of view [J]. Acta Photonica Sinica, 2020, 49(10): 1001001. (in Chinese) doi:  10.3788/gzxb20204910.1001001
[14] 赵读亮. 一种激光雷达近场饱和问题的判别及优化方法: CN, ZL202011304590.9[P]. 2021-03-16.

Zhao Duliang. A discrimination and optimization method for near-field saturation of lidar: CN, ZL202011304590.9 [P]. 2021-03-16.
[15] 万学平. 一种激光雷达信号过渡区的校正方法: ZL201711488594.5 [P]. 2018-10-12.

Wan Xueping. A correction method of laser radar signal transition region: CN, ZL201711488594.5 [P]. 2018-10-12.
[16] 郭守罡, 李松. 大动态范围激光雷达时刻鉴别电路设计[J]. 半导体光电, 2021, 42(1): 144- 150. doi:  10.16818/j.issn1001-5868.2021.01.026

Guo Shougang, Li Song. Design of time dis- crimination circuit for large dynamic range LiDAR [J]. Semiconductor Opto-electronics, 2021, 42(1): 144-150. (in Chinese) doi:  10.16818/j.issn1001-5868.2021.01.026
[17] 李松. 激光雷达系统回波能量动态范围的压缩方法: CN, ZL201510167154.4[P]. 2015-06-17.

Li Song. Compression method for dynamic range of echo energy of lidar system: CN, ZL201510167154.4[P]. 2015-06-17.
[18] 张冰娜, 黄庚华, 舒嵘, 等. 用于大动态范围厘米精度激光测距的孔径光阑自动调整技术[J]. 红外与激光工程, 2013, 42(07): 1788-1792. doi:  10.3969/j.issn.1007-2276.2013.07.025

Zhang Bingna, Huang Genghua, Shu Rong, et al. Automatic adjustment technology of diaphragm used for large dynamic laser ranging with centimetre grade precision [J]. Infrared and Laser Engineering, 2013, 42(7): 1788-1792. (in Chinese) doi:  10.3969/j.issn.1007-2276.2013.07.025
[19] Velotta R, Bartoli B, Capobianco R, et al. Analysis of the receiver response in LIDAR measurements [J]. Applied Optics, 1998, 37(30): 6999-7007. doi:  10.1364/AO.37.006999
[20] Stelmaszczykk K, Dellaglio M, Chudzynski S, et al. Analytical function for LIDAR geometrical compression form-factor calculations [J]. Applied Optics, 2005, 44(7): 1323-1331. doi:  10.1364/AO.44.001323
[21] 王威, 毛飞跃, 龚威, 等. 基于激光强度分布的激光雷达重叠因子计算及其敏感性分析[J]. 光学学报, 2014, 34(2): 285-291. doi:  10.3788/AOS201434.0228005

Wang Wei, Mao Feiyue, Gong Wei, et al. Overlap factor calculation method based on laser intensity distribution and its sensitivity analysis [J]. Acta Optica Sinica, 2014, 34(2): 0228005. (in Chinese) doi:  10.3788/AOS201434.0228005
[22] Kutila M, Pyykönen P, Holzhüter H, et al. Automotive LiDAR performance verification in fog and rain [C]//2018 21st International Conference on Intelligent Transportation System (ITSC), 2018: 1695-1701.
[23] Li Duan, Xu Lijun, Xie Xinhao, et al. Co-path full-waveform LIDAR for detection of multiple along-path objects [J]. Optics and Lasers in Engineering, 2018, 111: 211-221. doi:  10.1016/j.optlaseng.2018.08.009