[1] Patel M, Kim H, Kim J. All transparent metal oxide ultraviolet photodetector[J]. Advanced Electronic Materials, 2016, 1(11):1500232.
[2] Zhai T, Fang X, Liao M, et al. A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors[J]. Sensors, 2009, 9(8):6504.
[3] Wang C, Yin L, Zhang L, et al. Metal oxide gas sensors:sensitivity and influencing factors[J]. Sensors, 2010, 10(3):2088.
[4] Liao X, Yan X, Lin P, et al. Enhanced performance of ZnO piezotronic pressure sensor through electron-tunneling modulation of MgO nanolayer[J]. Acs Appl Mater Interfaces, 2015, 7(3):1602-1607.
[5] Fulati A, Ali S M U, Riaz M, et al. Miniaturized pH sensors based on zinc oxide nano-tubes/nanorods[J]. Sensors, 2009, 9(11):8911-8923.
[6] Wan Q, Li Q H, Chen Y J, et al. Positive temperature coefficient resistance and humidity sens-ing properties of Cd-doped ZnO nanowires[J]. Applied Physics Letters, 2004, 84(16):3085-3087.
[7] Minami T. Transparent conducting oxide semiconductors for transparent electrodes[J]. Semi-conductor Science Technology, 2005, 20(4):S35.
[8] Lang X, Hirata A, Fujita T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology, 2011, 6(4):232.
[9] Zhan Z Y, Xu C Y, Zhen L, et al. Large-scale synthesis of single-crystalline KNbO nanobelts via a simple molten salt method[J]. Ceramics International, 2010, 36(2):679-682.
[10] Zhan Z, An J, Zhang H, et al. Three-dimensional plasmonic photoanodes based on Au-embedded TiO2 structures for enhanced visible-light water splitting[J]. Acs Appl Mater Inter-Faces, 2014, 6(2):1139-1144.
[11] Kim K, Kim G, Lee B R, et al. High-resolution electro hydrodynamic jet printing of small-molecule organic light-emitting diodes[J]. Nanoscale, 2015, 7(32):13410.
[12] Kim S Y, Kim K, Hwang Y H, et al. High-resolution electro hydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance[J]. Nanoscale, 2016, 39(8):17113-17121.
[13] Kim M, Park J, Ji S, et al. Fully-integrated, bezel-less transistor arrays using reversibly foldable interconnects and stretchable origami substrates[J]. Nanoscale, 2016, 8(18):9504-9510.
[14] Chen H, Liu H, Zhang Z, et al. Nanostructured photodetectors:from ultraviolet to terahertz[J]. Advanced Materials, 2016, 28(3):403.
[15] Tran V T, Wei Y, Yang H, et al. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device[J]. Nanotechnology, 2017, 28(9):095204.
[16] Zhan Z, An J, Wei Y, et al. Inkjet-printed optoelectronics[J]. Nanoscale, 2016, 9(3):965-993.
[17] Teng F, Zheng L, Hu K, et al. Surface oxide thin layer of copper nanowires enhanced UV selective response of ZnO film photodetector[J]. Journal of Materials Chemistry C, 2016, 4(36):02901A.
[18] Chen M, Hu L, Xu J, et al. ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector[J]. Small, 2011, 7(17):2449-2453.
[19] Galloro J, Ginzburg M, Mguez H, et al. Replicating the structure of a cross linked polyferrocenylsilane inverse opal in the form of a magnetic ceramic[J]. Advanced Functional Materials, 2002, 12(5):382-388.
[20] Retamal J R D, Chen C Y, Lien D H, et al. Concurrent improvement in photogain and speed of a metal oxide nanowire photodetector through enhancing surface band bending via incorporating a nanoscale heterojunction[J]. Acs Photonics, 2014, 1(4):354-359.
[21] Liu X, Gu L, Zhang Q, et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity[J]. Nature Communications, 2014, 5(4007):4007.
[22] Nasiri N, Bo R, Chen H, et al. Structural engineering of nano-grain boundaries for low-voltage UV-photodetectors with gigantic photo-to dark-current ratios[J]. Advanced Optical Materials, 2016, 4(11):1787-1795.
[23] Monroy E, Omns F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors[J]. Semiconductor Science Technology, 2003, 18(4):R33.
[24] Fang X, Bando Y, Liao M, et al. Ultraviolet sensors:an efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability[J]. Advanced Functional Materials, 2010, 20(3):500-508.
[25] Ding L, Liu N, Li L, et al. Graphene-skeleton heat-coordinated and nanoamorphous-surface-state controlled pseudo-negative-photoconductivity of tiny SnO2 nano-particles[J]. Advanced Materials, 2015, 27(23):3525-3532.
[26] Li X, Gao C, Duan H, et al. High-performance photoelectrochemical-type self-powered UV photodetector using epitaxial TiO2/SnO2 branched heterojunction nanostructure[J]. Small, 2013, 9(11):2005.
[27] Xie Y, Wei L, Wei G, et al. A self-powered UV photodetector based on TiO2 nanorod arrays[J]. Nanoscale Research Letters, 2013, 8(1):1-6.
[28] Fang X, Hu L, Huo K, et al. New ultraviolet photodetector based on individual Nb2O5 nanobelts[J]. Advanced Functional Materials, 2011, 21(20):3907-3915.
[29] Liu H, Zhang Z, Hu L, et al. New UV-A photodetector based on individual potassium niobate nanowires with high performance[J]. Advanced Optical Materials, 2015, 2(8):771-778.
[30] Zhou J, Gu Y, Hu Y, et al. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization[J]. Applied Physics Letters, 2009, 94(19):191103.
[31] Cheng G, Wu X, Liu B, et al. ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed[J]. Applied Physics Letters, 2011, 99(20):203105.
[32] Lu J, Xu C, Dai J, et al. Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles[J]. Nanoscale, 2015, 7(8):3396-3403.
[33] Fu X W, Liao Z M, Xu J, et al. Improvement of ultraviolet photoresponse of bent ZnO microwires by coupling piezoelectric and surface oxygen adsorption/desorption effects.[J]. Nanoscale, 2013, 5(3):916-920.
[34] He P, Feng S, Liu S, et al. Ultrafast UV response detectors based on multi-channel ZnO nan-owire networks[J]. Rsc Advances, 2015, 5(127):105288-105291.
[35] Liu J, Lu R, Xu G, et al. Development of a seedless floating growth process in solution for synthesis of crystalline ZnO micro/nanowire arrays on graphene:towards high-performance nanohybrid ultraviolet photodetectors[J]. Advanced Functional Materials, 2013, 23(39):4941-4948.
[36] Zhan Z, An J, Zhang H, et al. Three-dimensional plasmonic photoanodes based on Au-embedded TiO2 structures for enhanced visible-light water splitting[J]. Acs Appl Mater Interfaces, 2014, 6(2):1139-1144.
[37] Liu K, Sakurai M, Liao M, et al. Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles[J]. Journal of Physical Chemistry C, 2010, 114(114):19835-19839.
[38] Zhan Z, Liu L, Wang W, et al. Ultrahigh surface-enhanced raman scattering of graphene from Au/Graphene/Au sandwiched structures with subnanometer gap[J]. Advanced Optical Materials, 2016, 4(12):2021-2027.
[39] Nasiri N, Bo R, Fu L, et al. Three-dimensional nano-heterojunction networks:a highly per-forming structure for fast visible-blind UV photodetectors[J]. Nanoscale, 2017, 9(5):2059.
[40] Chen C Y, Chen M W, Hsu C Y, et al. Enhanced recovery speed of nanostructured ZnO photodetectors using nanobelt networks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(6):1807-1811.
[41] Zheng Q, Huang J, Yang H, et al. A high-performance nanobridged MoO3 UV photodetector based on nanojunctions with switching characteristics[J]. Nanotechnology, 2017, 28(4):045202.
[42] Huang M H, Wu Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport[J]. Advanced Materials, 2001, 13(2):113-116.
[43] Sankaran K J, Kalpataru P, Balakrishnan S, et al. Catalytically induced nanographitic phase by a plati-num-ion implantation/annealing process to improve the field electron emission properties of ultrananocrystalline diamond films[J]. J Mater Chem C, 2015, 3(11):2632-2641.
[44] Lin Z, Xiao J, Li L, et al. Nanodiamond-embedded p-type copper (I) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution[J]. Adv Energy Mater, 2016, 6:1501865.
[45] Xiao J, Liu P, Li L, et al. Fluorescence origin of nanodiamonds[J]. J Phys Chem C, 2015, 119(4):2239-2248.
[46] Zhou X, Gan L, Tian W, et al. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors[J]. Adv Mater, 2015, 27(48):8035-8041.
[47] Hu X, Zhang X, Liang L, Bao J, et al. High-performance flexible broadband photodetector based on organo lead halide perovskite[J]. Adv Funct Mater, 2014, 24(46):7373-7380.
[48] Island J O, Blanter S I, Buscema M, et al. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors[J]. Nano Letters, 2015, 15(12):7853-7858.