[1] Long Tengfei, Zhang Zhaoming, He Guojin, et al. 30 m resolution global annual burned area mapping based on Landsat images and Google earth engine [J]. Remote Sensing, 2019, 11: 489. doi:  10.3390/rs11050489
[2] Puliti S, Hauglin M, Breidenbach J, et al. Modelling above-ground biomass stock over Norway using national forest inventory data with ArcticDEM and Sentinel-2 data [J]. Remote Sensing of Environment, 2020, 236: 111501. doi:  10.1016/j.rse.2019.111501
[3] Sarma C P, Dey A, Krishna A M. Influence of digital elevation models on the simulation of rainfall-induced landslides in the hillslopes of Guwahati, India [J]. Engineering Geology, 2020, 268: 105523. doi:  10.1016/j.enggeo.2020.105523
[4] Daniela A, Ranjith G, Mikko K, et al. A method for vertical adjustment of digital aerial photogrammetry data by using a high-quality digital terrain model [J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 84: 101954. doi:  10.1016/j.jag.2019.101954
[5] Ai H, Kentaro T, Ram A, et al. Synthesis of L-band SAR and forest heights derived from TanDEM-X DEM and 3 digital terrain models for biomass mapping [J]. Remote Sensing, 2020, 12: 349. doi:  10.3390/rs12030349
[6] 马跃, 阳凡林, 王明伟, 等. 利用GLAS激光测高仪计算格陵兰冰盖高程变化[J]. 红外与激光工程, 2015, 44(12): 65-69.

Ma Yue, Yang Fanlin, Wang Mingwei, et al. Calculation of elevation changing of Greenland’s ice sheet using GLAS laser altimeter [J]. Infrared and Laser Engineering, 2015, 44(12): 65-69. (in Chinese
[7] 李国元, 唐新明, 樊文锋, 等. 基于地面红外探测器的星载激光测高仪在轨几何定标[J]. 红外与激光工程, 2017, 46(11): 1117004.

Li Guoyuan, Tang Xinming, Fan Wenfeng, et al. On-orbit geometric calibration of satellite laser altimeter using ground-based IR detectors [J]. Infrared and Laser Engineering, 2017, 46(11): 1117004. (in Chinese
[8] Wang Xianwei, David M Holland, Gudmundsson G Hilmar, et al. Accurate coastal DEM generation by merging ASTER GDEM and ICESat/GLAS data over Mertz Glacier, Antarctica [J]. Remote Sensing of Environment, 2018, 206: 218-230. doi:  10.1016/j.rse.2017.12.041
[9] Nie Sheng, Wang Cheng, Dong Pinliang, et al. A novel model for terrain slope estimation using ICESat/GLAS waveform data [J]. IEEE Transactions on Geoence and Remote Sensing, 2018, 50, 1: 217-227.
[10] Lamsters K, Karuss J, Krievans M, et al. High-resolution orthophoto map and digital surface models of the largest Argentine Islands (the Antarctic) from unmanned aerial vehicle photogrammetry [J]. Journal of Maps, 2020, 16(2): 335-347. doi:  10.1080/17445647.2020.1748130
[11] Li Hui, Zhao Jiayang. Evaluation of the newly released worldwide AW3D30 DEM over typical landforms of China using two global DEMs and ICESat/GLAS data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11: 4430-4440. doi:  10.1109/JSTARS.2018.2874361
[12] Yang Xuebo, Wang Cheng, Nie Sheng, et al. application and validation of a model for terrain slope estimation using space-borne LiDAR waveform data [J]. Remote Sensing, 2018, 10: 1691. doi:  10.3390/rs10111691
[13] Irfan A, Jadunandan D, Saleem U, et al. A novel approach to estimate canopy height using ICESat/GLAS data: A case study in the New Forest National Park, UK [J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 23: 109-118. doi:  10.1016/j.jag.2012.12.009
[14] Yue Linwei, Shen Huanfeng, Zhang Liangpei, et al. High-quality seamless DEM generation blending SRTM-1, ASTER GDEMv2 and ICESat/GLAS observations [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 123: 20-34. doi:  10.1016/j.isprsjprs.2016.11.002
[15] Neuenschwander A L, Magruder L A. Canopy and terrain height retrievals with ICESat-2: a first look [J]. Remote Sensing, 2019, 11: 1721. doi:  10.3390/rs11141721
[16] Wang Cheng, Zhu Xiaoxiao, Nie Sheng, el al. Ground elevation accuracy verification of ICESat-2 data: a case study in Alaska, USA [J]. Optics Express, 2019, 27: 38168-38179. doi:  10.1364/OE.27.038168
[17] Huang Jiapeng, Xing Yanqiu, You Haotian, et al. Particle swarm optimization-based noise filtering algorithm for photon cloud data in forest area [J]. Remote Sensing, 2019, 11(8): 980. doi:  10.3390/rs11080980
[18] 黄佳鹏, 邢艳秋, 秦磊, 等. 弱光束条件下森林区域光子云去噪算法精度研究[J]. 农业机械学报, 2020, 51(4): 164-172. doi:  10.6041/j.issn.1000-1298.2020.04.019

Huang Jiapeng, Xing Yanqiu, Qin Lei, et al. Accuracy of photon cloud noise filtering algorithm in forest area under weak beam conditions [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 164-172. (in Chinese doi:  10.6041/j.issn.1000-1298.2020.04.019
[19] Chen Jun, Cao Xin, Peng Shu, et al. Analysis and applications of GlobeLand30: A review [J]. ISPRS International Journal of Geo-Information, 2017, 6(8): 230. doi:  10.3390/ijgi6080230
[20] Hansen M, Song X P. Vegetation Continuous Fields (VCF) yearly global 0.05 deg [DB/OL]. [2020-08-10]https://doi.org/10.5067/MEaSUREs/VCF/VCF5KYR.001.
[21] Neuenschwander Amy, Pitts Katherine, Jelley Benjamin, et al. ICE, CLOUD, and Land Elevation Satellite (ICESat-2) algorithm theoretical basis document (ATBD) for land-vegetation along-track products [EB/OL]. [2020-01-15] https://nsidc.org/data/atl08.