[1] Fixer J B, Foster G T, McGuirk J M, et al. Atom interferometer measurement of the newtonian constant of gravity[J]. Science, 2007, 315(5808):74-77.
[2] Mulle H, Peters A, Chu S. A precision measurement of the gravitational redshift by the interference of matter waves[J]. Nature, 2010, 463(7283):926-929.
[3] Xue H B, Feng Y Y, Chen S, et al. A cold atomic beam interferometer[J]. J Appl Phys, 2014, 117(9):4913711.
[4] Muller H, Chiow S W, Long Q, et al. Atom interferometry with up to 24-photon-momentum-transfer beam splitters[J]. Phys Rev Lett, 2008, 100(18):180405.
[5] Gibble K, Chu S. Laser-cooled Cs frequency standard and a measurement of the frequency shift due to ultracold collisions[J]. Phys Rev Lett, 1993, 70(12):1771-1774.
[6] Devenoges L, Stefanov A, Joyet A, et al. Improvement of the frequency stability below the dick limit with a continuous atomic fountain clock[J]. IEEE Transon Ultrason. Ferroelectr and Freq Control, 2012, 59(2):211-217.
[7] Wang H, Iyanu G. MOT-based continuous cold Cs-beam atomic clock[C]//2010 IEEE International Frequency Control Symposium, 2010:454-458.
[8] Vanier J. Atomic clocks based on coherent population trapping:a review[J]. Appl Phys B, 2005, 81(4):421-442.
[9] Wang Yiqiu. Atomic Laser Cooling and Trap[M]. Beijing:Peking University Press, 2007. (in Chinese)
[10] Pordan J, Migdall A, Phillips W D, et al. Stopping atoms with laser light[J]. Phys Rev Lett, 1985, 54(10):992-995.
[11] Balykin V I, Letokhov V S, Mishin V I. Cooling of sodium atoms by resonant laser emission[J]. Zeitschrift Fur Phys, 1980, 78:1376-1385.
[12] Lu Z T, Corwin K L, Renn M J, et al. Low-Velocity Intense Source of Atoms From a Magneto-optical Trap[M]. Hong Kong:World Scientific Publishing Co Pte Ltd, 2008:420-423.
[13] Feng Y Y, Zhu C X, Wang X J, et al. Characterization of a velocity-tunable 87Rb cold atomic source with a high-speed imaging technology[J]. Chin Phys B, 2009, 18(8):3373-3278.
[14] Wang X J, Feng Y Y, Xue H B, et al. A cold 87Rb atomic beam[J]. Chin Phys B, 2011, 20(12):126701.
[15] Dieckmann K, Spreeuw R J C, Weidemlle, et al. Two-dimensional magneto-optical trap as a source of slow atoms[J]. Phys Rev A, 1998, 58(5):3891-3895.
[16] Wang H, Buell W F. Velocity-tunable magneto-optical-trap-based cold Cs atomic beam[J]. J Opt Soc Am B, 2003, 20(10):2025-2030.
[17] Chaudhuri S, Roy S, Unnikrishnan C S. Realization of an intense cold Rb atomic beam based on a two-dimensional magneto-optical trap:Experiments and comparison with simulations[J]. Phys Rev A, 2006, 74(2):023406.
[18] Fang J C, Lu Q, Zhang Y C, et al. Compact high-flux cold cesium beam source based on a modified two-dimensional magneto-optical trap[J]. J Opt Soc Am B, 2015, 32(5):B61-B66.
[19] Wohlleben W, Chevy F, Madison, Dalibard J. An atom faucet[J]. Eur Phys J D, 2001, 15(2):237-244.
[20] Cacciapuoti L, Castrillo A, de Angelis M, et al. A continuous cold atomic beam from a magneto-optical trap[J]. Eur Phys J D, 2001, 15(2):245-249.
[21] Catani J, Maioli P, De Sarlo L, et al. Intense slow beams of bosonic potassium isotopes[J]. Phys Rev A, 2006, 73(3):033415.
[22] Fan P G, Wu Y M, Jia S, et al. Optimal design of two-dimensional magneto optical trap field coils for cold atom interferometer[J]. Infrared and Laser Engineering, 2016, 45(6):0618003.
[23] Townsend C G, Edwards N H, Cooper C J, et al. Phase-space density in the magneto-optical trap[J]. Phys Rev A, 1995, 52(2):1423-1440.
[24] Gabbanini C, Evangelista A, Gozzini S, et al. Scaling laws in magneto-optical traps[J]. Europhys Lett, 1997, 37(4):251-256.
[25] Wu B, Wang Z Y, Cheng B. A study of the -Gal-level cold atom gravimeter[J]. Geophysical and Geochemical Exploration, 2015, 39(S1):47-52.