[1] Murphy D B, Davidson M W. Fundamentals of Light Microscopy and Electronic Imaging[M]. Hoboken:John Wiley Sons, 2012.
[2] Thorn K. A quick guide to light microscopy in cell biology[J]. Molecular Biology of the Cell, 2016, 27(2):219-222.
[3] Turpin T, Gesell L, Lapides J, et al. Theory of the synthetic aperture microscope[C]//SPIE, 1995, 2566:230-240.
[4] Holloway J, Wu Y, Sharma M K, et al. SAVI:Synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography[J]. Science Advances, 2017, 3(4):e1602564.
[5] Fischer R S, Wu Y, Kanchanawong P, et al. Microscopy in 3D:a biologist's toolbox[J]. Trends in Cell Biology, 2011, 21(12):682-691.
[6] Day R N, Davidson M W. The fluorescent protein palette:tools for cellular imaging[J]. Chemical Society Reviews, 2011, 40(12):5923.
[7] Dean K M, Palmer A E. Advances in fluorescence labeling strategies for dynamic cellular imaging[J]. Nature Chemical Biology, 2014, 10(7):512-523.
[8] Pawley J B. Handbook of Biological Confocal Microscopy[M]. Madison:Springer, 2006.
[9] Minsky M. Memoir on inventing the confocal scanning microscope[J]. Scanning, 1988, 10(4):128-138.
[10] Sekar R B, Periasamy A. Fluorescence resonance energy transfer(FRET) microscopy imaging of live cell protein localizations[J]. The Journal of Cell Biology, 2003, 160(5):629-633.
[11] Heim R, Tsien R Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer[J]. Current Biology, 1996, 6(2):178-182.
[12] Selvin P R. The renaissance of fluorescence resonance energy transfer[J]. Nature Structural Molecular Biology, 2000, 7(9):730-734.
[13] Bastiaens P I, Squire A. Fluorescence lifetime imaging microscopy:spatial resolution of biochemical processes in the cell[J]. Trends in Cell Biology, 1999, 9(2):48-52.
[14] Digman M A, Caiolfa V R, Zamai M, et al. The phasor approach to fluorescence lifetime imaging analysis[J]. Biophysical Journal, 2008, 94(2):L14-L16.
[15] Axelrod D. Total internal reflection fluorescence microscopy in cell biology[J]. Traffic, 2011, 2(11):764-774.
[16] Maire G, Giovannini H, Talneau A, et al. Phase imaging and synthetic aperture super-resolution via total internal reflection microscopy[J]. Optics Letters, 2018, 43(9):2173-2176.
[17] Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structed illumination microscopy[J]. Journal of Microscopy, 2000, 198(Pt2):82-87.
[18] Neil M A, Jukaitis R, Wilson T. Method of obtaining optical sectioning by using structured light in aconventional microscope[J]. Optics Letters, 1993, 22(24):1905-1907.
[19] York A G, Parekh S H, Dalle Nogare D, et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy[J]. Nature Methods, 2012, 9(7):749-754.
[20] Mudry E, Belkebir K, Girard J, et al. Structuredillumination microscopy using unknown speckle patterns[J]. Nature Photonics, 2012, 6:312-315.
[21] Gao P, Pedrini G, Osten W. Phase retrieval with resolution enhancement by using structured illumination[J]. Optics Letters, 2013, 38(24):5204-5207.
[22] Gao P, Pedrini G, Osten W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy[J]. Optics Letters, 2013, 38(8):1328-1330.
[23] Qian J, Lei M, Dan D, et al. Full-color structured illumination optical sectioning microscopy[J]. Scientific Reports, 2015, 5:14513.
[24] Dan D, Lei M, Yao B, et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy[J]. Scientific Reports, 2013, 3:1116.
[25] Zhou X, Lei M, Dan D, et al. Image recombination transform algorithm for superresolution structured illumination microscopy[J]. Journal of Biomedical Optics, 2016, 21(9):096009.
[26] Yeh L H, Tian L, Waller L. Structured illumination microscopy with unknown patterns and a statistical prior[J]. Biomedical Optics Express, 2017, 8(2):695-711.
[27] Qian J, Dang S, Wang Z, et al. Large-scale 3D imaging of insects with nature color[J]. Optics Express, 2019, 27(4):4845-4857.
[28] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J].Science, 2006, 313(5793):1642-1645.
[29] Hess S T, Girirajan T P, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 2006, 91(11):4258-4272.
[30] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy(STORM)[J].Nature Methods, 2005, 3(10):793-795.
[31] Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier:super-resolution imaging of cells[J]. Cell, 2010, 143(7):1047-1058.
[32] Sigal Y M, Zhou R, Zhuang X. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 2018, 361(6405):880-887.
[33] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11):780-782.
[34] Gao P, Prunsche B, Zhou L, et al. Background suppression in fluorescence nanoscopy with stimulated emission doubledepletion[J]. Nature Photonics, 2017, 11:163-169.
[35] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 348(4951):73-76.
[36] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Method, 2005, 2(12):932-940.
[37] Keller P J, Schmidt A D, Wittbrodt J, et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy[J]. Science, 2008, 322(5904):1065-1069.
[38] Chen B C, Legant W R, Wang K, et al. Lattice light-sheet microscopy:imaging molecules to embryos at high spatiotemporal resolution[J]. Science, 2014, 346(6208):1257998.
[39] Keller P J, Ahrens M B. Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy[J]. Neuron, 2015, 85(3):462-483.
[40] Hoebe R A, Van Oven C H, Gadella T W Jr, et al. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging[J]. Nature Biotechnology, 2007, 25(2):249-253.
[41] Gordeon M P, Ha T, Selvin P R. Single-molecule high-resolution imaging with photobleaching[J]. Proceedings of the National Academy of Sciences, 2004, 101(17):6462-6465.
[42] Ferrara M A, Di Caprio G, Manag S, et al. Label-free imaging and biochemical characterization of bovine sperm cells[J]. Biosensors, 2015, 5(2):141-157.
[43] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 1942, 9(7):686-698.
[44] Nomarski G. Differential microinterferometer with polarized waves[J]. Journal de Physique et le Radium, 1955, 16:9-13.
[45] Gao P, Yao B, Min J, et al. Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cubebeamsplitters[J]. Optics Express, 2011, 19(3):1930-1935.
[46] Gao P, Yao B, Lindlein N, et al. Phase-shift extraction for generalized phase-shifting interferometry[J]. Optics Letters,2009, 34(22):3553-3555.
[47] Gao P, Harder I, Nercissian V, et al. Phase-shifting point-diffraction interferometry with common-path and in-line configuration formicroscopy[J]. Optics Letters, 2010, 35(5):712-714.
[48] Guo R, Yao B, Gao P, et al. Off-axis digital holographic microscopy with LED illumination based on polarization filtering[J]. Applied Optics, 2013, 52(34):8233-8238.
[49] Zheng J, Gao P, Shao X, et al. Refractive index measurement of suspended cells using opposed-view digital holographic microscopy[J]. Applied Optics, 2017, 56(32):9000-9005.
[50] Guo R, Wang F. Compact and stable real-time dual-wavelength digital holographic microscopy with a long-working distance objective[J]. Optics Express, 2017, 25(20):24512-24520.
[51] Mico V, Ferreira C, Garcia J. Surpassing digital holography limits bylensless object scanning holography[J]. Optics Express, 2012, 20(9):9382-9395.
[52] Creath K. Phase-shifting speckle interferometry[J]. Applied Optics, 1985, 24(18):3053-3058.
[53] Rao C, Jiang W, Ling N. Measuring the power-law exponent of an atmospheric turbulence phase power spectrum with a Shack-Hartmann wave-front sensor[J]. Optics Letters, 1999, 24(15):1008-1010.
[54] Klibanov M V, Sacks P E, Tikhonravov A V. The phase retrieval problem[J]. Inverse Problems, 1995, 11(1):1-28.
[55] Teague M R. Deterministic phase retrieval:A Green's function solution[J]. Journal of the Optical Society of America, 1983, 73(11):1434-1441.
[56] Fienup J R. Phase retrieval algorithms:a comparison[J]. Applied Optics, 1982, 21(15):2758-2769.
[57] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3(1):27-29.
[58] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation:fast solution with use of discrete cosine transform[J]. Optics Express, 2014, 22(8):9220-9244.
[59] Zuo C, Chen Q, Huang L, et al. Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation[J]. Optics Express, 2014, 22(14):17172-17186.
[60] Huang L, Zuo C, Idir M, et al. Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms[J]. Optics Letters, 2015, 40(9):1976-1979.
[61] Li J, Chen Q, Sun J, et al. Optimal illumination pattern for transport-of-intensity quantitative phase microscopy[J]. Optics Express, 2018, 26(21):27599-27614.
[62] Zuo C, Chen Q, Qu W, et al. High-speed transport-of-intensity phase microscopy with an electrically tunable lens[J]. Optics Express, 2013, 21(20):24060-24075.
[63] Zuo J, Vartanyants I, Gao M, et al. Atomic resolution imaging of a carbon nanotube from diffraction intensities[J]. Science, 2003, 300(5624):1419-1421.
[64] Faulkner H M L, Rodenburg J M. Movable aperture lenless transmission microscopy:a novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2):023903.
[65] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85(20):4795-4797.
[66] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10):1256-1262.
[67] Thibault P, Dierolf M, Bunk O, et al. Probe retrieval in ptychographic coherent diffractive imaging[J]. Ultramicroscopy, 2009, 109(4):338-343.
[68] Maiden M, Humphry J, Rodenburg J. Ptychographic transmission microscopy in three dimensions using a multi-slice approach[J]. Journal of the Optical Society of America A, 2012, 29(8):1606-1614.
[69] Li P, Batey D, Edo T, et al. Separation of three-dimensional scattering effects in tilt-series Fourier ptychography[J]. Ultramicroscopy, 2015, 158:1-7.
[70] Maiden A, Johnson D, Li P. Further improvements to the ptychographical iterative engine[J]. Optica, 2017, 4(7):736-745.
[71] Pfeifer M, Williams G, Vartanyants I, et al. Three-dimensional mapping of a deformation field inside a nanocrystal[J]. Nature, 2006, 442:63-66.
[72] Thibault P, Dierolf M, Menzel A, et al. High-resolution scanning x-ray diffraction microscopy[J]. Science, 2008, 321(5887):379-382.
[73] Humphry M J, Kraus B, Hurst A C, et al. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging[J]. Nature Communications, 2012, 3:730.
[74] Holler M, Diaz A, Guizar-sicairos M, et al. X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution[J]. Scientific Reports, 2014, 4:3857.
[75] Dierolf M, Menzel A, Thibault P, et al. Ptychographic X-ray computed tomography at the nanoscale[J]. Nature, 2010,467:436-440.
[76] Wang H, Liu C, Pan X, et al. The application of ptychography in the field of high power laser[C]//SPIE, 2015, 9255:925534.
[77] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 2013, 494(7435):68-71.
[78] Liu C, Walther T, Rodenburg J M. Influence of thick crystal effects on ptychographic image reconstruction with moveable illumination[J]. Ultramicroscopy, 2009, 109(10):1263-1275.
[79] Yao Yudong, Liu Cheng, Pan Xingchen, et al. Research status and development trend of PIE imaging method[J]. Chinese Journal of Lasers, 2016, 43(6):0609001. (in Chinese)
[80] Chen Wen, Jiang Zhilong, Liu Cheng, et al. Depth resolved imaging by 3PIE with dual-beam illumination[J]. Acta Optica Sinica, 2016, 36(8):0811002. (in Chinese)
[81] Yu W, Wang S, Veetil S, et al. High-quality image reconstruction method for ptychography with partially coherent illumination[J]. Physical Review B, 2016, 93:241105.
[82] Pan An, Wang Dong, Shi Yishi, et al. Incoherent ptychography in Fresnel domain with simultaneous multi-wavelength illumination[J]. Acta Physica Sinica, 2016, 65(12):124201.(in Chinese)
[83] Pan An, Zhang Xiaofei, Wang Bin, et al. Experimental study on three-dimensional ptychography for thick sample[J]. Acta Physica Sinica, 2016, 65(1):014204. (in Chinese)
[84] Pan A, Zhou M, Zhang Y, et al. Adaptive-window angular spectrum algorithm for near-field ptychography[J]. Optics Communications, 2019, 430:73-82.
[85] Pan A, Yao B. Three-dimensional space optimization for near-field ptychography[J]. Optics Express, 2019, 27(4):5433-5446.
[86] Shi Y, Li T, Wang Y, et al. Optical image encryption via ptychography[J]. Optics Letters, 2013, 38(9):1425-1427.
[87] Shi Y, Wang Y, Li T, et al. Ptychographical imaging algorithm with a single random phase encoding[J]. Chinese Physics Letters, 2013, 30(7):074203.
[88] Gao Q, Wang Y, Li T, et al. Optical encryption of unlimited-size images based on ptychographic scanning digital holography[J]. Applied Optics, 2014, 53(21):4700-4707.
[89] Li T, Shi Y. Security risk of diffractive-imaging-based optical cryptosystem[J]. Optics Express, 2015, 23(16):21384-21391.
[90] Liu Zhenjun, Guo Chen, Tan Jiubin. Lensfree computational imaging based on multi-distance phase retrieval[J]. Infrared and Laser Engineering, 2018, 47(10):1002002. (in Chinese)
[91] Zhou M, Min J, Gao P, et al. Single-beam phase retrieval with partially coherent light illumination[J]. Journal of Optics, 2016, 18(1):015701.
[92] Redondo R, Bueno G, Valdiviezo J C, et al. Autofocus evaluation for brightfield microscopy pathology[J]. Journal of Biomedical Optics, 2012, 17(3):036008.
[93] Wang Z, Lei M, Yao B, et al. Compact multi-band fluorescent microscope with an electrically tunable lens for autofocusing[J]. Biomedical Optics Express, 2015, 6(11):4353-4364.
[94] Heng X, Erickson D, Baugh L R, et al. Optofluidic microscopy:a method for implementing high resolution optical microscope on a chip[J]. Lab on a Chip, 2006, 6(10):1274-1276.
[95] Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics[J].Nature, 2006, 442(7101):381-386.
[96] Heng X, Hsiao E, Psaltis D, et al. An optical tweezer actuated, nanoaperture-grid based optofluidic microscope implementation[J]. Optics Express, 2007, 15(25):16367-16375.
[97] Lew M, Cui X, Heng X, et al. Interference of a four-hole aperture for on-chip quantitative two-dimensional differential phase imaging[J]. Optics Letters, 2007, 32(20):2963-2965.
[98] Cui X, Lee L M, Heng X, et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging[J]. Proceedings of the National Academy of Science, 2008, 105(31):10670-10675.
[99] Wu J, Cui X, Lee L M, et al. The application of Fresnel zone plate based projection in optofluidic microscopy[J]. Optics Express, 2008, 16(20):15595-15602.
[100] Pang S, Cui X, DeModena J, et al. Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate[J]. Lab on a Chip, 2010, 10(4):411-414.
[101] Zheng G, Lee S A, Yang S, et al. Sub-pixel resolving optofluidic microscope for on-chip cell imaging[J]. Lab on a Chip, 2010, 10(22):3125-3129.
[102] Zheng G, Lee S A, Antebi Y, et al. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM)[J]. Proceedings of the National Academy of Science, 2011, 108(41):16889-16894.
[103] Bishara W, Su T W, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Optics Express, 2010, 18(11):11181-11191.
[104] Greenbaum A, Luo W, Su T W, et al. Imaging without lenses:achievements and remaining challenges of wide-field on-chip microscopy[J]. Nature Methods, 2012, 9(9):889-895.
[105] Luo W, Greenbaum A, Zhang Y, et al. Synthetic aperture-based on-chip microscopy[J]. Light:Science Applications, 2015, 4:e261.
[106] Zhang J, Sun J, Chen Q, et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy[J]. Scientific Reports, 2017, 7(1):11777.
[107] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9):739-745.
[108] Ou X, Horstmeyer R, Yang C, et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 2013, 38(22):4845-4848.
[109] Zheng G, Ou X, Horstmeyer R, et al. Characterization of spatially varying aberrations for wide field-of-view microscopy[J]. Optics Express, 2013, 21(13):15131-15143.
[110] Ou X, Zheng G, Yang C. Embedded pupil function recovery for Fourier ptychographic microscopy[J]. Optics Express, 2014, 22(5):4960-4972.
[111] Bian Z, Dong S, Zheng G. Adaptive system correction for robust Fourier ptychographic imaging[J]. Optics Express, 2013, 21(26):32400-32410.
[112] Zheng G. Breakthroughs in photonics 2013:Fourier ptychographic imaging[J]. IEEE Photonics Journal, 2014, 6(2):1-7.
[113] Dong S, Nanda P, Shiradkar R, et al. High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography[J]. Optics Express, 2014, 22(17):20856-20870.
[114] Dong S, Shiradkar R, Nanda P, et al. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging[J]. Biomedical Optics Express, 2014, 5(6):1757-1767.
[115] Horstmeyer R, Ou X, Zheng G, et al. Digital pathology with Fourier ptychography[J]. Computerized Medical Imaging and Graphics, 2015, 42:38-43.
[116] Guo K, Liao J, Bian Z, et al. Instant scope:a low-cost whole slide imaging system with instant focal plane detection[J]. Biomedical Optics Express, 2015, 6(9):3210-3216.
[117] Guo K, Dong S, Nanda P, et al. Optimization of sampling pattern and the design of Fourier ptychographic illuminator[J]. Optics Express, 2015, 23(5):6171-6180.
[118] Horstmeyer R, Chung J, Ou X, et al. Diffraction tomography with Fourier ptychography[J]. Optica, 2016, 3(8):827-835.
[119] Pacheco S, Zheng G, Liang R. Reflective Fourier ptychography[J]. Journal of Biomedical Optics, 2016, 21(2):026010.
[120] Chung J, Kim J, Ou X, et al. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography[J]. Biomedical Optics Express, 2016, 7(2):352-368.
[121] Zheng G, Ou X, Yang C. 0.5 gigapixel microscopy using a flatbed scanner[J]. Biomedical Optics Express, 2013, 5(1):1-8.
[122] Guo K, Bian Z, Dong S, et al. Microscopy illumination engineering using a low-cost liquid crystal display[J]. Biomedical Optics Express, 2015, 6(2):574-579.
[123] Dong S, Horstmeyer R, Shiradkar R, et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging[J]. Optics Express, 2014, 22(11):13586-13599.
[124] Horstmeyer R, Chen R Y, Ou X, et al. Solving ptychography with a convex relaxation[J]. New Journal of Physics, 2015, 17(5):053044.
[125] Horstmeyer R, Yang C. A phase space model of Fourier ptychographic microscopy[J]. Optics Express, 2014, 22(1):338-358.
[126] Kim J, Henley B M, Kim C H, et al. Incubator embedded cell culture imaging system(emsight) based on fourier ptychographic microscopy[J]. Biomedical Optics Express, 2016, 7(8):3097-3110.
[127] Ou X, Chuang J, Horstmeyer R, et al. Aperture scanning Fourier ptychographic microscopy[J]. Biomedical Optics Express, 2016, 7(8):3140-3150.
[128] Mico V, Zheng J, Garcia J, et al. Resolution enhancement in quantitative phase microscopy[J]. Advances in Optics and Photonics, 2019, 11(1):135-214.
[129] Tian L, Wang J, Waller L. 3D differential phase-contrast microscopy with computational illumination using an LED array[J]. Optics Letter, 2014, 39(5):1326-1329.
[130] Liu Z, Tian L, Liu S, et al. Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope[J]. Journal of Biomedical Optics, 2014, 19(10):106002.
[131] Tian L, Waller L. Quantitative differential phase contrast imaging in an LED array microscope[J]. Optics Express, 2015, 23(9):11394-11403.
[132] Chen M, Tian L, Waller L. 3D differential phase contrast microscopy[J]. Biomedical Optics Express, 2016, 7(10):3940-3950.
[133] Phillips Z F, Chen M, Waller L. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)[J]. PloS One, 2017, 12(2):e0171228.
[134] Yeh L H, Dong J, Zhong J, et al Experimental robustness of Fourier ptychography phase retrieval algorithms[J]. Optics Express, 2015, 23(26):33214-33240.
[135] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2015, 2(2):104-111.
[136] Tian L, Li X, Ramchandran K, et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope[J]. Biomedical Optics Express, 2014, 5(7):2376-2389.
[137] Tian L, Liu Z, Yeh L H, et al. Computational illumination for high-speed in vitro fourier ptychographic microscopy[J].Optica, 2015, 2(10), 904-911.
[138] Guo K, Zhang Z, Jiang S, et al. 13-fold resolution gain through turbid layer via translated unknown speckle illumination[J]. Biomedical Optics Express, 2018, 9(1):260-274.
[139] Yilmaz H, Putten E, Bertolotti J, et al. Speckle correlation resolutionenhancement of wide-field fluorescence imaging[J].Optica, 2015, 2(5):424-429.
[140] Yeh L H, Chowdhury S, Waller L. Computational structured illumination forhigh-content fluorescence and phase microscopy[J]. Biomedical Optics Express, 2019, 10(4):1978-1998.
[141] Zhang Y, Jiang W, Dai Q. Nonlinear optimization approach for Fourier ptychographic microscopy[J]. Optics Express, 2015, 23(26):33822-33835.
[142] Bian L, Suo J, Zheng G, et al. Fourier ptychographic reconstruction using Wirtinger flow optimization[J]. Optics Express, 2015, 23(4):4856-4866.
[143] Bian L, Zheng G, Guo K, et al. Motion-corrected Fourier ptychography[J]. Biomedical Optics Express, 2016, 7(11):4543-4553.
[144] Sun J, Chen Q, Zhang Y, et al. Efficient positional misalignment correction method for fourier ptychographic microscopy[J]. Biomedical Optics Express, 2016, 7(3):1336-1350.
[145] Zuo C, Sun J, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 2016, 24(18):20724-20744.
[146] Fan Y, Sun J, Chen Q, et al. Adaptive denoising method for Fourier ptychographic microscopy[J]. Optics Communications, 2017, 404:23-31.
[147] Sun J, Zuo C, Zhang L, et al. Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations[J]. Scientific Reports, 2017, 7(1):1187.
[148] Sun J, Zuo C, Zhang J, et al. High-speed fourier ptychographic microscopy based on programmable annular illuminations[J].Scientific Reports, 2018, 8(1):7669.
[149] Sun J, Chen Q, Zhang J, et al. Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography[J]. Optics Letters, 2018, 43(14):3365-3368.
[150] Pan A, Zhang Y, Zhao T, et al. System calibration method for Fourier ptychographic microscopy[J]. Journal of Biomedical Optics, 2017, 22(9):096005.
[151] Zhang Y, Pan A, Lei M, et al. Data preprocessing methods for robust Fourier ptychographic microscopy[J]. Optics Engineering, 2017, 56(12):123107.
[152] Pan A, Zhang Y, Wen K, et al. Subwavelength resolution Fourier ptychography with hemispherical digital condensers[J]. Optics Express, 2018, 26(18):23119-23131.
[153] Pan A, Zuo C, Xie Y, et al. Vignetting effect in Fourier ptychographic microscopy[J]. Optics and Lasers in Engineering, 2019, 120:40-48.
[154] Pan A, Wen K, Yao B. Linear space-variant optical cryptosystem via Fourier ptychography[J]. Optics Letters, 2019, 44(8):2032-2035.
[155] Maiden A M, Humphry M J, Sarahan M C, et al. An annealing algorithm to correct positioning errors in ptychography[J]. Ultramicroscopy, 2012, 120:64-72.
[156] Zhang F, Peterson I, Vila-Comamala J, et al. Translation position determination in ptychographic coherent diffraction imaging[J]. Optics Express, 2013, 21(11):13592-13606.
[157] Horstmyer R, Ou X, Chuang J, et al. Overlapped Fourier coding for optical aberration removal[J]. Optics Express, 2014, 22(20):24062-24080.
[158] Horstmeyer R, Heintzmann R, Popescu G, et al. Standardizing the resolution claims for coherent microscopy[J]. Nature Photonics, 2016, 10:68-76.
[159] Gibbs J W. Fourier series[J]. Nature, 1898, 59:200.
[160] Pan A, Zhang Y, Zhao T, et al. https://www.sites.google.com/site/dranpanblog/publications.
[161] Sun J, Chen Q, Zhang Y, et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space[J]. Optics Express, 2016, 24(14):15765-15781.
[162] Bian L, Suo J, Situ G, et al. Content adaptive illumination for Fourier ptychography[J]. Optics Letters, 2014, 39(23):6648-6651.
[163] Zhang Y, Jiang W, Tian L, et al. Self-learning based Fourier ptychographic microscopy[J]. Optics Express, 2015, 23(14):18471-18486.
[164] He X, Liu C, Zhu J. Single-shot fourier ptychography based on diffractive beam splitting[J]. Optics Letters, 2018, 43(2):214-217.
[165] Lee B, Hong K, Yoo D, et al. Single-shot phase retrieval via Fourier ptychography[J]. Optica, 2018, 5(8):976-983.
[166] Konda P, Taylor J M, Harvey A R. Scheimpflug multi-aperture Fourier ptychography:coherent computational microscope with gigapixels/s data acquisition rates using 3D printed components[C]//SPIE, 2017, 10076:100760R.
[167] Konda P, Taylor J M, Harvey A R. Parallelized aperture synthesis using multi-aperture Fourier ptychographic microscopy[J]. arXiv preprint arXiv, 2018:1806.02317.
[168] Thibault P, Guizar-Sicairos M. Maximum-likelihood refinement for coherent diffraction imaging[J]. New Journal of Physics, 2012, 14(6):063004.
[169] Bian L, Suo J, Chung J, et al. Fourier ptychographic reconstruction using poisson maximum likelihood and truncated Wirtinger gradient[J]. Scientific Reports, 2016, 6:27384.