[1] Watanabe T M, Sato T, Gonda K, et al. Three-dimensional nanometry of vesicle transport in living cells using dual-focus imaging optics[J]. Biochem Biophys Res Commun, 2007, 359:1-7.
[2] Tanida J, Kumagai T, Yamada K, et al. Thin observation module by bound optics (TOMBO):concept and experimental verification[J]. Appl Opt, 2001, 40:1806-1813.
[3] Yamaguchi M. Light-field and holographic three-dimensional displays[J]. J Opt Soc Am A, 2016, 33:2348-2364.
[4] Martnez-Corral M, Javidi B. Fundamentals of 3D imaging and displays:A tutorial on integral imaging, light-field, and plenoptic systems[J]. Adv Opt Photonics, 2018, 10:512-566.
[5] Bruning J H, Herriott D R, Gallagher J E, et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses[J]. Appl Opt, 1974, 13:2693-2703.
[6] Wolf E. Three-dimensional structure determination of semi-transparent objects from holographic data[J]. Opt Commun,1969, 1:153-156.
[7] Born M, Wolf E. Principles of Optics[M]. 7th ed. Cambridge:Cambridge University Press, 1999.
[8] Saleh B E, Teich M C, Saleh B E. Fundamentals of Photonics[M]. 2nd ed. Wiley:New York, 2007.
[9] Gershun A. The light field[J]. J Math Phys, 1939, 18:51-151.
[10] Lam E Y. Computational photography with plenoptic camera and light field capture:Tutorial[J]. J Opt Soc Am, 2015, 32:2021-2032.
[11] Zheng J, Mic V, Gao P. Resolution enhancement in phase microscopy:A review[J]. Preprints, 2018,
[12] Hong J, Kim Y, Choi H J, et al. Three-Dimensional display technologies of recent interest:principles, status, and issues[J]. Appl Opt, 2011, 50:H87-H115.
[13] Park S G, Yeom J, Jeong Y, et al. Recent issues on integral imaging and its applications[J]. J Inf Dis, 2014, 15:37-46.
[14] Zhao Y, Kwon K C, Piao Y L, et al. Depth-layer weighted prediction method for a full-color polygon-based holographic system with real objects[J]. Opt Lett, 2017, 42:2599-2602.
[15] Li G, Hong K, Yeom J, et al. Acceleration method for computer generated spherical hologram calculation of real objects using graphics processing unit[J]. Chin Opt Lett, 2014, 12:060016.
[16] Mait J N, Euliss G W, Athale R A. Computational imaging[J]. Adv Opt Photonics, 2018, 10:409-483.
[17] Horisaki R, Ogura Y, Aino M, et al. Single-shot phase imaging with a coded aperture[J]. Opt Lett, 2014, 39:6466-6469.
[18] Fienup J R. Phaseretrieval algorithms:Acomparison[J]. Appl Opt, 1982, 21:2758-2769.
[19] Testorf M, Hennelly, B, Ojeda-Castaneda J. Phase-Space Optics[M]. New York:McGraw-Hill Professional Publishing, 2009.
[20] Teague MR. Deterministic phase retrieval:A Green's function solution[J]. J Opt Soc Am, 1983, 73:1434-1441.
[21] Gabor D. A new microscopic principle[J]. Nature, 1948, 161:777-778.
[22] Poon T C. Digital Holography and Three-Dimensional Display:Principles and Applications[M]. London:Springer, 2006.
[23] Boesl U. Time-of-flight mass spectrometry:Introduction to the basics[J]. Mass Spectrom Rev, 2016, 36:86-109.
[24] Geng J. Structured-light 3D surface imaging:A tutorial[J]. Adv Opt Photonics, 2011, 3:128-160.
[25] Banks M S, Read J C A, Allison R S, et al. Stereoscopy and the Human Visual System[J]. SMPTE Motion Imaging J, 2012, 121:24-43.
[26] Orth A, Crozier K B. Light field moment imaging[J]. Opt Lett, 2013, 38:2666-2668.
[27] Levoy M. Light fields and computational imaging[J]. Computer, 2006, 39:46-55.
[28] Levoy M, Ng R, Adams A, et al. Light field microscopy[J]. ACM Trans Gr, 2006, 25:924-934.
[29] Ng R. Fourier slice photography[J]. ACM Trans Gr, 2005, 24:735-744.
[30] Levoy M, Hanrahan P. Light field rendering[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, 1996:31-42.
[31] Ng R, Levoy M, Brdif M, et al. Light field photography with a hand-held plenoptic camera[J]. Comput Sci Tech Rep, 2005, 2:1-11.
[32] Xiao X, Javidi B, Martinez-Corral M, et al. Advances in three-dimensional integral imaging:sensing, display, and applications[J]. Appl Opt, 2013, 52:546-560.
[33] Wilburn B, Joshi N, Vaish V, et al. High performance imaging using large camera arrays[J]. ACM Trans Gr, 2005, 24:765-776.
[34] Lin X, Wu J, Zheng G, et al. Camera array based light field microscopy[J]. Biomed Opt Express, 2015, 6:3179-3189.
[35] Georgiev T, Zheng K C, Curless B, et al. Spatio-angular resolution tradeoffs in integral photography[J]. Render Tech,2006:263-272.
[36] Veeraraghavan A, Raskar R, Agrawal A, et al. Dappled photography:Mask enhanced cameras for heterodyned light fields and coded aperture refocusing[J]. ACM Trans Gr, 2007, 26:69.
[37] Liang C K, Lin T H, Wong B Y, et al. Programmable aperture photography:Multiplexed light field acquisition[J]. ACM Trans Gr, 2008, 27:55:1-55:10.
[38] Fuchs M, Kachele M, Rusinkiewicz S. Design and fabrication of faceted mirror arrays for light field capture[J]. Comput Gr Forum, 2013, 32:246-257.
[39] Manakov A, Restrepo J F, Klehm O, et al. A reconfigurable camera add-on for high dynamic range, multispectral, polarization, and light-field imaging[J]. ACM Trans Gr, 2013, 32:1-47.
[40] Levoy M, Zhang Z, Mcdowall I. Recording and controlling the 4D light field in a microscope using microlens arrays[J]. J Microsc, 2009, 235:144-162.
[41] Ng R. Digital light field photography[D]. San Francisco:Standford University, 2006.
[42] Park J H, Hong K, Lee B. Recent progress in three-dimensional information processing based on integral imaging[J]. Appl Opt, 2009, 48:H77-H94.
[43] Chen N, Park J H, Kim N. Parameter analysis of integral Fourier hologram and its resolution enhancement[J]. Opt Express, 2010, 18:2152-2167.
[44] Chen N, Yeom J, Jung J H, et al. Resolution comparison between integral-imaging-based hologram synthesis methods using rectangular and hexagonal lens arrays[J]. Opt Express,2011, 19:26917-26927.
[45] Denisyuk Y N. On the reflection of optical properties of an object in a wave field of light scattered by it[J]. Dokl Akad Nauk, SSSR, 1962, 144:1275-1278.
[46] Leith E N, Upatnieks J. Wavefront reconstruction with continuous-tone objects[J]. J Opt Soc Am, 1963, 53:1377-1381.
[47] Hariharan P, Oreb B F, Eiju T. Digital phase-shifting interferometry:A simple error-compensating phase calculation algorithm[J]. Appl Opt, 1987, 26:2504-2506.
[48] Nugent K A. X-ray non-interferometric phase imaging:A unified picture[J]. J Opt Soc Am A, 2007, 24:536-547.
[49] Chen N, Ren Z, Li D, et al. Analysis of the noise in back-projection light field acquisition and its optimization[J]. Appl Opt, 2017, 56:F20-F26.
[50] Goodman J W. Introduction to Fourier Optics[M]. 3rd ed. New Zealand:Roberts Company, 2005.
[51] Park J H, Seo S W, Chen N, et al. Fourier hologram generation from multiple incoherent defocused images[C]//The Three-Dimensional Imaging, Visualization, and Display 2010 and Display Technologies and Applications for Defense, Security, and Avionics IV, 2010:7690-7698.
[52] Park J H, Seo S W, Chen N, et al. Hologram synthesis from defocused images captured under incoherent illumination[C]//Proceedings of the Digital Holography and Three-Dimensional Imaging, 2010:12-14.
[53] Levin A, Durand F. Linear view synthesis using a dimensionality gap light field prior[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010:1831-1838.
[54] Marwah K, Wetzstein G, Bando Y, et al. Compressive light field photography using overcomplete dictionaries and optimized projections[J]. ACM Trans Gr, 2013, 32, 46:1-46:12.
[55] Bailey S W, Echevarria J I, BodenheimerB, et al. Fast depth from defocus from focal stacks[J]. Vis Comput, 2014, 31:1697-1708.
[56] Kuthirummal S, Nagahara H, Zhou C, et al. Flexible depth of field photography[J]. IEEE Trans Pattern Anal Mach Intell, 2011, 33:58-71.
[57] Zeng G L. One-angle fluorescence tomography with in-and-out motion[J]. J Electron Imaging, 2013, 22:043018.
[58] McMillan L, Bishop G. Plenoptic modeling:An image-based rendering system[C]//Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, 1995:39-46.
[59] Park J H, Lee S K, Jo N Y, et al. Light ray field capture using focal plane sweeping and its optical reconstruction using 3D displays[J]. Opt Express, 2014, 22:25444-25454.
[60] Mousnier A, Vural E, Guillemot C. Partial light field tomographic reconstruction from a fixed-camera focal stack[J]. Computer Science, 2015, 22(8):347-356.
[61] Wang H, Chen N, Zheng S, et al. Fast and high-resolution light field acquisition using defocus modulation[J]. Appl Opt, 2018, 57:A250-A256.
[62] Wang H, Chen N, Liu J, et al. Light field imaging based on defocused photographic images[C]//Digital Holography and Three-Dimensional Imaging, 2017:W3A-3.
[63] Chen N, Ren Z, Lam E Y. High-resolution Fourier hologram synthesis from photographic images through computing the light field[J]. Appl Opt, 2016, 55:1751-1756.
[64] Liu J, Xu T, Yue W, et al. Light-field moment microscopy with noise reduction[J]. Opt Express, 2015, 23:29154-29162.
[65] Zhang Z, Levoy M. Wigner distributions and how they relate to the light field[C]//Proceedings of the 2009 IEEE International Conference on Computational Photography (ICCP), 2009:1-10.
[66] Liu C, Qiu J, Jiang M. Light field reconstruction from projection modeling of focal stack[J]. Opt Express, 2017, 25:11377-11388.
[67] Yin X, Wang G, Li W, et al. Iteratively reconstructing 4D light fields from focal stacks[J]. Appl Opt, 2016, 55:8457-8463.
[68] Jiang Z, Pan X, Liu C, et al. Light field moment imaging with the ptychographic iterative engine[J]. AIP Adv, 2014, 4:107108.
[69] Teague M R. Irradiance moments:their propagation and use for unique retrieval of phase[J]. J Opt Soc Am, 1982, 72:1199-1209.
[70] Falaggis K, Kozacki T, Kujawin'ska M, et al. Optimum plane selection criteria for single-beam phase retrieval techniques based on the contrast transfer function[J]. Opt Lett, 2014, 39:30-33.
[71] Martinez-Carranza J, Falaggis K, Kozacki T. Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers[J]. Opt Lett, 2014, 39:182-185.
[72] Liu C, Qiu J, Zhao S. Iterative reconstruction of scene depth with fidelity based on light field data[J]. Appl Opt, 2017, 56:3185-3192.
[73] Zuo C, Chen Q, Qu W, et al. High-speed transport-of-intensity phase microscopy with an electrically tunable lens[J]. Opt Express, 2013, 21:24060-24075.
[74] Gerchberg R W, Saxton W O. A practical algorithm for the determination of the phase from image and diffraction plane pictures[J]. J Phys D Appl Phys, 1972, 35:237-246.
[75] Gureyev T E, Roberts A, Nugent K A. Partially coherent fields, the transport-of-intensity equation, and phase uniqueness[J]. J Opt Soc Am A, 1995, 12:1942-1946.
[76] Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light[J]. Phys Rev Lett, 1998, 80:2586-2589.
[77] Yang G Z, Dong B Z, Gu B Y, et al. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system:A comparison[J]. Appl Opt, 1994, 33:209-218.
[78] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Opt Lett, 1978, 3:27-29.
[79] Cederquist J N, Fienup J R, Wackerman C C, et al. Wave-front phase estimation from Fourier intensity measurements[J]. J Opt Soc Am A, 1989, 6:1020-1026.
[80] Devaney A J, Chidlaw R. On the uniqueness question in the problem of phase retrieval from intensity measurements[J]. J Opt Soc Am, 1978, 68:1352-1354.
[81] Fienup J R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint[J]. J Opt Soc Am A, 1987, 4:118-123.
[82] Guo C, Liu S, Sheridan JT. Iterative phase retrieval algorithms I:optimization[J]. Appl Opt, 2015, 54:4698-4708.
[83] Rolleston R, George N. Image reconstruction from partial Fresnel zone information[J]. Appl Opt, 1986, 25:178-183.
[84] Misell D L. An examination of an iterative method for the solution of the phase problem in optics and electron optics:I. Test calculations[J]. J Phys D Appl Phys, 1973, 6:2200-2216.
[85] Fienup J R. Lensless coherent imaging by phase retrieval with an illumination pattern constraint[J]. Opt Express, 2006, 14:498-508.
[86] Guo C, Shen C, Li Q, et al. A fast-converging iterative method based on weighted feedback for multi-distance phase retrieval[J]. Sci Rep, 2018, 8:6436.
[87] Konijnenberg A, Coene W, Pereira S, et al. Combining ptychographical algorithms with the Hybrid Input-Output (HIO) algorithm[J]. Ultramicroscopy, 2016, 171:43-54.
[88] Lu X, Gao W, Zuo J M, et al. Atomic resolution tomography reconstruction of tilt series based on a GPU accelerated hybrid input-output algorithm using polar Fourier transform[J]. Ultramicroscopy, 2015, 149:64-73.
[89] Rolleston R, George N. Stationary phase approximations in Fresnel-zone magnitude-only reconstructions[J]. J Opt Soc Am A, 1987, 4:148-153.
[90] Dean B H, Bowers C W. Diversity selection for phase-diverse phase retrieval[J]. J Opt Soc Am A, 2003, 20:1490-1504.
[91] Mayo S C, Miller P R, Wilkins S W, et al. Quantitative X-ray projection microscopy:phase-contrast and multi-spectral imaging[J]. J Microsc, 2002, 207:79-96.
[92] Anand A, Pedrini G, Osten W, et al. Wavefront sensing with random amplitude mask and phase retrieval[J]. Opt Lett,2007, 32:1584-1586.
[93] Almoro P F, Hanson S G. Random phase plate for wavefront sensing via phase retrieval and a volume speckle field[J]. Appl Opt, 2008, 47:2979-2987.
[94] Zhang F, Chen B, Morrison G R, et al. Phase retrieval by coherent modulation imaging[J]. Nat Commun, 2016, 7:13367.
[95] Brady G R, Guizar-Sicairos M, Fienup J R. Optical wavefront measurement using phase retrieval with transverse translation diversity[J]. Opt Express, 2009, 17:624-639.
[96] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Appl Phys Lett, 2004, 85:4795-4797.
[97] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]. Opt Lett, 2005, 30:833-835.
[98] Chen N, Yeom J, Hong K, et al. Fast converging algorithm for wavefront reconstruction based on a sequence of diffracted intensity images[J]. J Opt Soc Korea, 2014, 18:217-224.
[99] Bao P, Zhang F, Pedrini G, et al. Phase retrieval using multiple illumination wavelengths[J]. Opt Lett, 2008, 33:309-311.
[100] Zhou A, Chen N, Wang H, et al. Analysis of Fourier ptychographic microscopy with half of the captured images[J]. J Opt, 2018, 20:095701.
[101] Zhou A, Wang W, Chen N, et al. Fast and robust misalignment correction of Fourier ptychographic microscopy for full field of view reconstruction[J]. Opt Express, 2018, 26:23661-23674.
[102] Gao P, Pedrini G, Osten W. Phase retrieval with resolution enhancement by using structured illumination[J]. Opt Lett, 2013, 38:5204-5207.
[103] Almoro P, Pedrini G, Osten W. Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field[J]. Appl Opt, 2006, 45:8596-8605.
[104] Camacho L, Mic V, Zalevsky Z, et al. Quantitative phase microscopy using defocussing by means of a spatial light modulator[J]. Opt Express, 2010, 18:6755-6766.
[105] Agour M, Almoro P F, Falldorf C. Investigation of smooth wave fronts using SLM-based phase retrieval and a phase diffuser[J]. J Eur Opt Soc Rapid Publ, 2012, 7:12051.
[106] Almoro P F, Glckstad J, Hanson S G. Single-plane multiple speckle pattern phase retrieval using a deformable mirror[J]. Opt Express, 2010, 18:19304-19313.
[107] Roddier F, Roddier C, Roddier N. Curvature sensing:A new wavefront sensing method[C]//Proceedings of the 32nd Annual International Technical Symposium on Optical and Optoelectronic Applied Science and Engineering, 1988.
[108] Bajt S, Barty A, Nugent K, et al. Quantitative phase-sensitive imaging in a transmission electron microscope[J]. Ultramicroscopy, 2000, 83:67-73.
[109] Nugent K A. Coherent methods in the X-ray sciences[J]. Adv Phys, 2010, 59:1-99.
[110] Allman B, McMahon P, Nugent K, et al. Phase radiography with neutrons[J]. Nature, 2000, 408:158-159.
[111] Streibl N. Phase imaging by the transport equation of intensity[J]. Opt Commun, 1984, 49:6-10.
[112] Barty A, Nugent K A, Paganin D, et al. Quantitative optical phase microscopy[J]. Opt Lett, 1998, 23:817-819.
[113] Kou S S, Waller L, Barbastathis G, et al. Quantitative phase restoration by direct inversion using the optical transfer function[J]. Opt Lett, 2011, 36:2671-2673.
[114] Zuo C, Chen Q, Qu W, et al. Noninterferometric single-shot quantitative phase microscopy[J]. Opt Lett, 2013, 38:3538-3541.
[115] Zuo C, Chen Q, Asundi A. Light field moment imaging:Comment[J]. Opt Lett, 2014, 39:654.
[116] Woods S C, Greenaway A H. Wave-front sensing by use of a Green's function solution to the intensity transport equation[J]. J Opt Soc Am A, 2003, 20:508-512.
[117] Allen L, Oxley M. Phase retrieval from series of images obtained by defocus variation[J]. Opt Commun, 2001, 199:65-75.
[118] Pinhasi S V, Alimi R, Perelmutter L, et al. Topography retrieval using different solutions of the transport intensity equation[J]. J Opt Soc Am A, 2010, 27:2285-2292.
[119] Gureyev T E, Roberts A, Nugent K A. Phase retrieval with the transport-of-intensity equation:Matrix solution with use of Zernike polynomials[J]. J Opt Soc Am A, 1995, 12:1932-1941.
[120] Gureyev T E, Nugent K A. Phase retrieval with the transport-of-intensity equation. Ⅱ. Orthogonal series solution for nonuniform illumination[J]. J Opt Soc Am A, 1996, 13:1670-1682.
[121] Gureyev T E, Nugent K A. Rapid quantitative phase imaging using the transport of intensity equation[J]. Opt Commun,1997, 133:339-346.
[122] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation:fast solution with use of discrete cosine transform[J]. Opt Express, 2014, 22:9220-9244.
[123] Zuo C, Chen Q, Li H, et al. Boundary-artifact-free phase retrieval with the transport of intensity equation Ⅱ:Applications to microlens characterization[J]. Opt Express,2014, 22:18310-18324.
[124] Huang L, Zuo C, Idir M, et al. Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms[J]. Opt Lett,2015, 40:1976-1979.
[125] Volkov V, Zhu Y, Graef M D. A new symmetrized solution for phase retrieval using the transport of intensity equation[J]. Micron, 2002, 33:411-416.
[126] Martinez-Carranza J, Falaggis K, Kozacki T, et al. Effect of imposed boundary conditions on the accuracy of transport of intensity equation-based solvers[C]//Proceedings of the Modeling Aspects in Optical Metrology IV, 2013:87890N.
[127] Frank J, Altmeyer S, Wernicke G. Non-interferometric, non-iterative phase retrieval by Green's functions[J]. J Opt Soc Am A, 2010, 27:2244-2251.
[128] Ishizuka A, Mitsuishi K, Ishizuka K. Direct observation of curvature of the wave surface in transmission electron microscope using transport intensity equation[J]. Ultramicroscopy, 2018, 194:7-14.
[129] Ishizuka A, Ishizuka K, Mitsuishi K. Boundary-artifact-free observation of magnetic materials using the transport of intensity equation[J]. Microsc Microanal, 2018, 24:924-925.
[130] Schmalz J A, Gureyev T E, Paganin D M, et al. Phase retrieval using radiation and matter-wave fields:Validity of Teague's method for solution of the transport-of-intensity equation[J]. Phys Rev A, 2011, 84:023808.
[131] Zuo C, Chen Q, Huang L, et al. Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation[J]. Opt Express, 2014, 22:17172-17186.
[132] Ferrari J A, Ayubi G A, Flores J L, et al. Transport of intensity equation:Validity limits of the usually accepted solution[J]. Opt Commun, 2014, 318:133-136.
[133] Zuo C, Chen Q, Yu Y, et al. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Opt Express, 2013, 21:5346-5362.
[134] Waller L, Tian L, Barbastathis G. Transport of intensity phase-amplitude imaging with higher order intensity derivatives[J]. Opt Express, 2010, 18:12552-12561.
[135] Paganin D, Barty A, McMahon P J, et al. Quantitative phase-amplitude microscopy. Ⅲ. The effects of noise[J]. J Microsc, 2004, 214:51-61.
[136] Martin A, Chen F R, Hsieh W K, et al. Spatial incoherence in phase retrieval based on focus variation[J]. Ultramicroscopy, 2006, 106:914-924.
[137] Ishizuka K, Allman B. Phase measurement of atomic resolution image using transport of intensity equation[J]. Microscopy, 2005, 54:191-197.
[138] Soto M, Acosta E. Improved phase imaging from intensity measurements in multiple planes[J]. Appl Opt, 2007, 46:7978-7981.
[139] Cong W, Wang G. Higher-order phase shift reconstruction approach:Higher-order phase shift reconstruction approach[J]. Med Phys, 2010, 37:5238-5242.
[140] Bie R, Yuan X H, Zhao M,et al. Method for estimating the axial intensity derivative in the TIE with higher order intensity derivatives and noise suppression[J]. Opt Express,2012, 20:8186-8191.
[141] Gureyev T, Pogany A, Paganin D, et al. Linear algorithms for phase retrieval in the Fresnel region[J]. Opt Commun, 2004, 231:53-70.
[142] Martinez-Carranza J, Falaggis K, Kozacki T. Multi-filter transport of intensity equation solver with equalized noise sensitivity[J]. Opt Express, 2015, 23:23092-23107.
[143] Sun J, Zuo C, Chen Q. Iterative optimum frequency combination method for high efficiency phase imaging of absorptive objects based on phase transfer function[J]. Opt Express, 2015, 23:28031-28049.
[144] Jenkins M H, Long J M, Gaylord T K. Multifilter phase imaging with partially coherent light[J]. Appl Opt, 2014, 53:D29-D39.
[145] Zhong J, Claus R A, Dauwels J, et al. Transport of intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes[J]. Opt Express, 2014, 22:10661-10674.
[146] Xue B, Zheng S, Cui L, et al. Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes[J]. Opt Express, 2011, 19:20244-20250.
[147] Zheng S, Xue B, Xue W, et al. Transport of intensity phase imaging from multiple noisy intensities measured in unequally-spaced planes[J]. Opt Express, 2012, 20:972-985.
[148] Savitzky A, Golay M J E. Smoothing and differentiation of data by dimplified least squares procedures[J]. Anal Chem,1964, 36:1627-1639.
[149] Gorry P A. General least-squares smoothing and differentiation of nonuniformly spaced data by the convolution method[J]. Anal Chem, 1991, 63:534-536.
[150] Luo J, Ying K, He P, et al. Properties of Savitzky-Golay digital differentiators[J]. Dig Signal Process, 2005, 15:122-136.
[151] Zuo C, Sun J, Zhang J, et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Opt Express, 2015, 23:14314-14328.
[152] Waller L, Kou S S, Sheppard C J R, et al. Phase from chromatic aberrations[J]. Opt Express, 2010, 18:22817-22825.
[153] Nguyen T, Nehmetallah G, Tran D, et al. Fully automated, high speed, tomographic phase object reconstruction using the transport of intensity equation in transmission and reflection configurations[J]. Appl Opt, 2015, 54:10443-10453.
[154] Almoro P F, Waller L, Agour M, et al. Enhanced deterministic phase retrieval using a partially developed speckle field[J]. Opt Lett, 2012, 37:2088-2090.
[155] Gorthi S S, Schonbrun E. Phase imaging flow cytometry using a focus-stack collecting microscope[J]. Opt Lett, 2012, 37:707-709.
[156] Zuo C, Sun J, Li J, et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination[J]. Sci Rep, 2017, 7:7654.
[157] Li J, Chen Q, Zhang J, et al. Efficient quantitative phase microscopy using programmable annular LED illumination[J]. Biomed Opt Express, 2017, 8:4687-4705.
[158] Chakraborty T, Petruccelli J C. Source diversity for transport of intensity phase imaging[J]. Opt Express, 2017, 25:9122-9137.
[159] Chakraborty T, Petruccelli J C. Optical convolution for quantitative phase retrieval using the transport of intensity equation[J]. Appl Opt, 2018, 57:A134-A141.
[160] Shaked N T, Katz B, Rosen J. Review of three-dimensional holographic imaging by multiple-viewpoint projection-based methods[J]. Appl Opt, 2009, 48:H120-H136.
[161] McCrickerd J T, George N. Holographic stereogram from sequential component photographs[J]. Appl Phys Lett, 1968, 12:10-12.
[162] Benton S A. Survey of holographic stereograms[C]//Proceedings of the Processing and Display of Three-Dimensional Data, 1983.
[163] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2015, 2:104-111.
[164] Adelson E H, Bergen J R. The Plenoptic Function and the Elements of Early Vision[M]. Cambridge:MIT Press, 1991:3-20.
[165] Gureyev T E, Paganin D M, Stevenson A W, et al. Generalized Eikonal of partially coherent beams and its use in quantitative imaging[J]. Phys Rev Lett, 2004, 93:068103.
[166] Bastiaans M J. Application of the Wigner distribution function to partially coherent light[J]. J Opt Soc Am A, 1986, 3:1227-1238.
[167] Walther A. Radiometry and coherence[J]. J Opt Soc Am,1968, 58:1256-1259.
[168] Zuo C, Chen Q, Tian L, et al. Transport of intensity phase retrieval and computational imaging for partially coherent fields:The phase space perspective[J]. Opt Lasers Eng, 2015, 71:20-32.
[169] Boashash B. Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals[J]. Proc IEEE, 1992, 80:520-538.
[170] Bastiaans M J. The Wigner distribution function applied to optical signals and systems[J]. Opt Commun, 1978, 25:26-30.
[171] Petruccelli J C, Tian L, Barbastathis G. The transport of intensity equation for optical path length recovery using partially coherent illumination[J]. Opt Express, 2013, 21:14430-14441.
[172] Dragoman D. Phase-space interferences as the source of negative values of the Wigner distribution function[J]. J Opt Soc Am A, 2000, 17:2481-2485.
[173] Bastiaans M J. Uncertainty principle for partially coherent light[J]. J Opt Soc Am, 1983, 73:251-255.
[174] Paganin D, Gureyev T E, Mayo S C, et al. X-ray omni microscopy[J]. J Microsc, 2004, 214:315-327.
[175] Li J, Chen Q, Sun J, et al. Multimodal computational microscopy based on transport of intensity equation[J]. J Biomed Opt, 2016, 21:126003.
[176] Friberg A T. On the existence of a radiance function for finite planar sources of arbitrary states of coherence[J]. J Opt Soc Am, 1979, 69:192-198.
[177] Oh S B, Kashyap S, Garg R, et al. Rendering wave effects with augmented light field[J]. Comput Gr Forum, 2010, 29:507-516.
[178] Schwiegerling J.Wavefront Sensing:Shack-Hartmann sensing[J]. J Refract Surg, 2001, 17:573-577.
[179] Waller L. Phase imaging with partially coherent light[C]//Proceedings of the Three-dimensional and multidimensional microscopy:Image acquisition and processing XX, 2013.
[180] Iaconis C, Walmsley I A. Direct measurement of the two-point field correlation function[J]. Opt Lett, 1996, 21:1783-1785.
[181] Marks D L, Stack R A, Brady D J. Three-dimensional coherence imaging in the Fresnel domain[J]. Appl Opt, 1999, 38:1332-1342.
[182] Nugent K A. Wave field determination using three-dimensional intensity information[J]. Phys Rev Lett, 1992, 68:2261-2264.
[183] Raymer M G, Beck M, McAlister D. Complex wave-field reconstruction using phase-space tomography[J]. Phys Rev Lett, 1994, 72:1137-1140.
[184] Rydberg C, Bengtsson J. Numerical algorithm for the retrieval of spatial coherence properties of partially coherent beams from transverse intensity measurements[J]. Opt Express, 2007, 15:13613-13623.
[185] Zhang Z, Chen Z, Rehman S, et al. Factored form descent:A practical algorithm for coherence retrieval[J]. Opt Express, 2013, 21:5759.
[186] Tian L, Zhang Z, Petruccelli J C, et al. Wigner function measurement using a lenslet array[J]. Opt Express, 2013, 21:10511-10525.
[187] Waller L, Situ G, Fleischer J W. Phase-space measurement and coherence synthesis of optical beams[J]. Nat Photonics,2012, 6:474-479.
[188] Allen L J, Faulkner H M L, Nugent K A, et al. Phase retrieval from images in the presence of first-order vortices[J]. Phys Rev E, 2001, 63:037602.
[189] Lubk A, Guzzinati G, Brrnert F, et al. Transport of intensity phase retrieval of arbitrary wave fields including vortices[J]. Phys Rev Lett, 2013, 111:173902.