[1] 郑运强, 刘欢, 孟佳成, 等. 空基激光通信研究进展和趋势以及关键技术[J]. 红外与激光工程, 2022, 51(06): 397-409.

Zheng Yunqiang, Liu Huan, Meng Jiacheng, et al. Development status, trend and key technologies of air-based laser communication [J]. Infrared and Laser Engineering, 2022, 51(6): 20210475. (in Chinese)
[2] 李锐, 林宝军, 刘迎春, 等. 激光星间链路发展综述: 现状、趋势、展望[J/OL]. 红外与激光工程: 1-14[2023-03-02].

Li Rui, Lin Baojun, Liu Yingchun, et al. Review on laser intersatellite link: Current status, trends, and prospects [J]. Infrared and Laser Engineering, 2023, 52(3): 20220393. (in Chinese)
[3] 陈飞. 大功率Nd: YAG激光振镜扫描系统的研究[D]. 华中科技大学, 2011.

Chen Fei. Study on high power Nd: YAG laser scanning galvanometer system[D]. Wuhan: Huazhong University of Science & Technology, 2011. (in Chinese)
[4] Mincuzzi G, Rebiere A, Lopez J, et al. New, fast, galvo scanner head for high throughput micromachining [C]//Proceedings of SPIE, 2018, 10520: 105200X.
[5] Mincuzzi G, Rebiere A, Goaec B, et al. Beam engineering for high throughput material processing with high power, femtosecond lasers [C]//Proceedings of SPIE, 2019, 10906: 109061B.
[6] Mincuzzi G, Audouard E, Bourtereau A, et al. Pulse to pulse control for highly precise and efficient micromachining with femtosecond lasers [J]. Optics Express, 2020, 28(12): 17209-17218. doi:  10.1364/OE.391107
[7] 范娜娜, 王懋, 温少聪, 等. 基于二维MEMS振镜的激光雷达系统的光学设计[J]. 光学技术, 2020, 46(03): 290-294.

Fan Nana, Wang Mao, Wen Shaocong, et al. Optical design for 2D MEMS-based lidar system [J]. Optical Technique, 2020, 46(3): 290-294. (in Chinese)
[8] 胥守振, 谢实梦, 吴丹, 等. 基于声学扫描振镜的超声/光声双模态成像技术[J]. 物理学报, 2022, 71(5): 94-101.

Xu Shouzhen, Xie Shimeng, Wu Dan, et al. Ultrasound/photoacoustic dual-modality imaging based on acoustic scanning galvanometer [J]. Acta Phys Sin, 2022, 71(5): 050701. (in Chinese)
[9] Lu Yafei. Research on fast/fine steering mirror system [D]. Changsha: National University of Defense Technology, 2009: 21-30. (in Chinese)
[10] Wu Xin. Research on high-performance fast steering mirror [D]. Wuhan: Huazhong University of Science and Technology, 2012: 1-19. (in Chinese)
[11] Loney G C. Design and performance of a small two-axis high-bandwidth steering mirror [C]//Proceedings of SPIE, 1991, 1454: 198-206.
[12] Kluk D J, Boulet M T, Trumper D L. A high-bandwidth, high-precision, two-axis steering mirror with moving iron actuator [J]. Mechatronics, 2012, 22(3): 257-270. doi:  10.1016/j.mechatronics.2012.01.008
[13] Tapos F M, Edinger D J, Hilby T R, et al. High bandwidth fast steering mirror [C]//Proceedings of SPIE, 2005, 5877: 587707.
[14] Ernst C, Georg S. System design and control of a resonant fast steering mirror for Lissajous-based scanning [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(5): 1963-1972. doi:  10.1109/TMECH.2017.2722578
[15] Willstatter L, Mahon R, Ghiorzi J, et al. Characterization of fast-steering mirrors at both high and low temperatures [C]//Proceedings of SPIE, 2020, 11272: 112721K.
[16] 邵兵, 孙立宁, 曲东升, 等. 自由空间光通信ATP系统关键技术研究[J]. 压电与声光, 2005, 27(04): 431-433.

Shao Bing, Sun Lining, Qu Dongsheng, et al. Research on the key technology of ATP system for free space optical communication [J]. Piezoelectrics & Acoustooptics, 2005, 27(4): 431-433. (in Chinese)
[17] 向思桦, 陈四海, 吴鑫, 等. 基于新型压电驱动器的激光扫描器[J]. 红外与激光工程, 2010, 39(01): 67-70+75.

Xiang Sihua, Chen Sihai, Wu Xin, et al. Laser scanner based on novel piezoelectric actuators [J]. Infrared and Laser Engineering, 2010, 39(1): 67-70, 75. (in Chinese)
[18] 袁刚, 王代华, 李世栋. 大角度压电式快速控制反射镜[J]. 光学精密工程, 2015, 23(08): 2258-2264. doi:  10.3788/OPE.20152308.2258

Yuan Gang, Wang Daihua, Li Shidong, et al. Piezoelectric fast steering mirror with large excursion angle [J]. Optics and Precision Engineering, 2015, 23(8): 2258-2264. (in Chinese) doi:  10.3788/OPE.20152308.2258
[19] 冉兵, 赵帝植, 文良华. 压电倾斜镜中堆叠式压电陶瓷驱动器动态应力计算分析[J]. 激光与光电子学进展, 2022, 59(05): 1-10.

Ran Bing, Zhao Dizhi, Wen Lianghua. Research on dynamic stress of piezoelectric fast steering mirror stacked PZT actuator [J]. Laser & Optoelectronics Progress, 2022, 59(5): 0523001. (in Chinese)
[20] Ning Yu. Performance test and application study of a bimorph deformable mirror[D]. Changsha: National University of Defence Technology, 2008: 23-35. (in Chinese)
[21] Miller L M, Agronin M L, Bartman R K, et al. Fabrication and characterization of a micromachined deformable mirror for adaptive optics applications [C]//Proceedings of SPIE, 1993, 1945: 421-430.
[22] Krishnamoorthy R, Bifano T G, Vandelli N, et al. Development of microelectromechanical deformable mirrors for phase modulation of light [J]. Optical Engineering, 1997, 36(2): 542-548. doi:  10.1117/1.601599
[23] Xie Huikai, Pan Yingtian, Fedder G K. A CMOS-MEMS mirror with curled-hinge comb drives [J]. Journal of Microelectromechanical Systems, 2003, 12(4): 450-457. doi:  10.1109/JMEMS.2003.815839
[24] Cornelissen S A, Bierden P A, Bifano T G, et al. 4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging [J]. Journal of Micro-nanolithography MEMS and MOEMS, 2009, 8(3): 031308.
[25] Bai Yanhui, Yeow J T W, Wilson B C. Design, fabrication, and characteristics of a MEMS micromirror with sidewall electrodes [J]. Journal of Microelectromechanical Systems, 2010, 19(3): 619-631. doi:  10.1109/JMEMS.2010.2044139
[26] Afrang S, Mobki H, Hassanzadeh M, et al. Design and simulation of a MEMS analog micro-mirror with improved rotation angle [J]. Microsystem Technologies-Micro and Nanosystems Information Storage and Processing Systems, 2019, 25(3): 1099-1109.
[27] 庄须叶, 汪为民, 陶逢刚, 等. 非正交二维MEMS倾斜镜的研制[J]. 光学精密工程, 2011, 19(08): 1845-1851. doi:  10.3788/OPE.20111908.1845

Zhuang Xuye, Wang Weimin, Tao Fenggang, et al. Development of non-perpendicular 2D MEMS tilt mirrors [J]. Optics and Precision Engineering, 2011, 19(8): 1845-1851. (in Chinese) doi:  10.3788/OPE.20111908.1845
[28] 胡放荣, 姚军. 静电排斥型微机电系统变形镜驱动器[J]. 强激光与粒子束, 2010, 22(1): 41-44. doi:  10.3788/HPLPB20102201.0041

Hu Fangrong, Yao Jun. Microelectromechanical systems deformable mirror actuator based on electrostatic repulsive force [J]. High Power Laser and Particle Beams, 2010, 22(1): 41-44. (in Chinese) doi:  10.3788/HPLPB20102201.0041
[29] 汪为民, 王强. 140单元MEMS变形镜研制及测试分析[J]. 光电工程, 2018, 45(03): 104-112.

Wang Weimin, Wang Qiang. Development and characterization of a 140-element MEMS deformable mirror [J]. Opto-Electronic Engineering, 2018, 45(3): 104-112. (in Chinese)
[30] 王健. 基于声光偏转器的卫星光通信收发系统特性研究[D]. 哈尔滨工业大学, 2015.

Wang Jian. Research on characteristic of transceiving systems of intersatellite laser communication based on acousto-optic deflectors[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
[31] Korpel A. Acousto-Optics [M]. 2nd ed. New York: Marcel Dekker, Inc, 1997.
[32] 李洁. 宽带声光偏转器的优化设计研究[D]. 河北师范大学, 2016.

Li Jie. Research on the optimum design of broadband acousto-optic deflector[D]. Shijiazhuang: Hebei Normal University, 2016. (in Chinese)
[33] Antonov S N, Vainer A V, Proklov V V, et al. Extension of the angular scanning range of the acousto-optic deflector with a two-element phased-array piezoelectric transducer [J]. Technical Physics, 2013, 58(9): 1346-1351. doi:  10.1134/S1063784213090053
[34] Antonov S N. Acousto-optic deflector of depolarized laser radiation [J]. Technical Physics, 2016, 61(1): 134-137. doi:  10.1134/S1063784216010047
[35] Antonov S N. Acousto-optic deflector with a high diffraction efficiency and wide angular scanning range [J]. Acoustical Physics, 2018, 64(4): 432-436. doi:  10.1134/S1063771018040012
[36] Antonov S N, Rezvov Y G. An Acousto-optical deflector based on paratellurite: increasing the thermal stability of parameters [J]. Instruments and Experimental Techniques, 2021, 64(5): 729-733. doi:  10.1134/S0020441221040011
[37] Peled I, Kaminsky R, Kotler Z. Acousto-optics bandwidth broadening in a Bragg cell based on arbitrary synthesized signal methods [J]. Applied Optics, 2015, 54(16): 5065-5073. doi:  10.1364/AO.54.005065
[38] 李公羽, 刘大力. 倾斜式变周期表面波声光偏转器的研制[J]. 长春邮电学院学报, 2000, 18(01): 23-27.

Li Gongyu, Liu Dali. Study of chirp acoustooptic surface wave transducer [J]. Journal of Changchun Post and Telecomm-Unication Institute, 2000, 18(1): 23-27. (in Chinese)
[39] 何晓亮, 刘伟, 周建国, 等. 应用于频谱分析的高分辨率声光偏转器[J]. 压电与声光, 2005, 27(05): 16-17+28.

He Xiaoliang, Liu Wei, Zhou Jianguo, et al. Application of high-resolution acoustooptic deflector on spectrum analysis [J]. Piezoelectrics & Acoustooptics, 2005, 27(5): 16-17, 28. (in Chinese)
[40] 俞宽新, 米银梅, 索萌. TeO2超声跟踪反常声光偏转器的优化设计[J]. 压电与声光, 2007, 29(05): 510-512+529.

Yu Kuanxin, Mi Yinmei, Suo Meng. Optimal design of TeO2 ultrasonic beam steering anisotropic acousto-optic deflector [J]. Piezoelectrics & Acoustooptics, 2007, 29(5): 510-512, 529. (in Chinese)
[41] 张泽红, 陆川, 何晓亮, 等. 磷化镓声光偏转器[J]. 压电与声光, 2014, 36(5): 694-697.

Zhang Zehong, Lu Chuan, He Xiaoliang, et al. Study on acousto-optic deflector based on gallium phosphide [J]. Piezoelectrics & Acoustooptics, 2014, 36(5): 694-697. (in Chinese)
[42] 张泽红, 何晓亮. 反常大带宽声光偏转器[J]. 压电与声光, 2016, 38(6): 837-839.

Zhang Zehong, He Xiaoliang. Abnormal acousto-optic deflector with large-bandwidth [J]. Piezoelectrics & Acoustooptics, 2016, 38(6): 837-839. (in Chinese)
[43] 夏茜, 陈清华, 张泽红, 等. 高频声光偏转器的抗静电研究[J]. 压电与声光, 2021, 43(01): 51-53+58.

Xia Qian, Chen Qinghua, Zhang Zehong, et al. Study on antistatic of high frequency acousto-optic deflector [J]. Piezoelectrics & Acoustooptics, 2021, 43(1): 51-53, 58. (in Chinese)
[44] McManamon P F. An overview of optical phased array technology and status [C]//Proceedings of SPIE, 2005, 5947: 594701.
[45] Mcmanamon P F, Dorschner T A, Corkum D L, et al. Optical phased array technology [J]. Proc of the IEEE, 1996, 84(2): 268-298. doi:  10.1109/5.482231
[46] Sharp R C, Resler D P, Hobbs D S, et al. Electrically tunable liquid-crystal wave plate in the infrared [J]. Optics Letters, 1990, 15(1): 87-89. doi:  10.1364/OL.15.000087
[47] Engstrom D, O'Callaghan M J, Walker C, et al. Fast beam steering with a ferroelectric-liquid-crystal optical phased array [J]. Applied Optics, 2009, 48(9): 1721-1726. doi:  10.1364/AO.48.001721
[48] Peng F, Lee Y H, Luo Z, et al. Low voltage blue phase liquid crystal for spatial light modulators [J]. Optics Letters, 2015, 40(21): 5097-5100. doi:  10.1364/OL.40.005097
[49] Li S Q, Xu X W, Veetil R M, et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface [J]. Science, 2019, 364(6445): 1087-1090. doi:  10.1126/science.aaw6747
[50] 张健, 徐林, 吴丽莹, 等. 液晶光学相控阵可编程光束偏转研究[J]. 光子学报, 2008, 37(08): 1497-1502.

Zhang Jian, Xu Lin, Wu Liying, et al. Programmable beam steering based on liquid crystal optical phased array [J]. Acta Photonica Sinica, 2008, 37(8): 1497-1502. (in Chinese)
[51] 孙洋东. 相控阵激光雷达波控技术的研究与应用[D]. 成都: 电子科技大学, 2011.

Sun Yangdong. Research and application of phased array laser radar wave control technology[D]. Chengdu: University of Electronic Science and Technology of China, 2011. (in Chinese)
[52] Wang X, Wu L, Xiong C, et al. Agile laser beam deflection with high steering precision and angular resolution using liquid crystal optical phased array [J]. IEEE Transactions on Nanotechnology, 2018, 17(1): 26-28. doi:  10.1109/TNANO.2016.2634094
[53] Mcmanamon P F. Agile Nonmechanical beam steering [J]. Optical Photonics News, 2006, 17(3): 24-29. doi:  10.1364/OPN.17.3.000024
[54] Goltsos W C, Holz M. Agile beam steering using binary optics microlens arrays [J]. Optical Engineering, 1990, 29(11): 1392-1397. doi:  10.1117/12.55743
[55] Watson E A, Whitaker W E, Brewer C D, et al. Implementing optical phased array beam steering with cascaded microlens arrays [C]//Proceedings of the IEEE Aerospace Conference, 2002: 1429-1436.
[56] Shi Lei, Shi Jianru, Mcmanamon P F, et al. Design considerations for high efficiency liquid crystal decentered microlens arrays for steering light [J]. Applied Optics, 2010, 49(3): 409-421. doi:  10.1364/AO.49.000409
[57] Li Liwei, Bryant D, Bos P J. Liquid crystal lens with concentric electrodes and inter-electrode resistors [J]. Liquid Crystals Reviews, 2014, 2(2): 130-154. doi:  10.1080/21680396.2014.974697
[58] Beeckman J, Yang T-H, Nys I, et al. Multi-electrode tunable liquid crystal lenses with one lithography step [J]. Optics Letters, 2018, 43(2): 271-274. doi:  10.1364/OL.43.000271
[59] 周崇喜, 谢伟民, 董小春, 等. 非等焦距微透镜阵列对二维激光扫描优化设计研究 [C]//第十一届全国电子束、离子束、光子束学术年会论文集. 中国电子学会, 2001: 178-181.
[60] 董珊. 微透镜扫描器的研究[D]. 武汉: 华中科技大学, 2007.

Dong Shan. Research on beam steering with microlens arrays[D]. Wuhan: Huazhong University of Science & Technology, 2007. (in Chinese)
[61] 谢洪波, 王瑶, 毛晨盛, 等. 一种可实现收发一体连续扫描的微透镜阵列[J]. 应用光学, 2018, 39(5): 613-618

Xie Hongbo, Wang Yao, Mao Chensheng, et al. Micro-lens array for integrative transmitting and receiving continuous scanning [J]. Journal of Applied Optics, 2018, 39(5): 613-618. (in Chinese)
[62] Chen Mingce, Li Zheng, Shao Qi, et al. A new type of liquid-crystal cylindrical microlens arrays with nonuniform microcoil electrodes [C]//Proceedings of SPIE, 2019, 10941: 109410U.
[63] Li Rui, Chu Fan, Dou Hu, et al. Double-layer liquid crystal lens array with composited dielectric layer [J]. Liquid Crystals, 2020, 47(2): 248-254. doi:  10.1080/02678292.2019.1642523
[64] 杨旭, 耿超, 李小阳, 等. 微透镜阵列光学相控阵扫描技术研究进展[J]. 强激光与粒子束, 2021, 33(08): 69-79.

Yang Xu, Geng Chao, Li Xiaoyang, et al. Review of microlens array optical phased array beam scanning technique [J]. High Power Laser and Particle Beams, 2021, 33(8): 69-79. (in Chinese)
[65] Oh C, Kim J, Muth J M, et al. A new beam steering concept: Risley gratings [C]//Proceedings of SPIE, 2009, 7466: 74660J.
[66] Kim J, Oh C, Escuti M J, et al. Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings [C]//Proceedings of SPIE, 2008, 7093: 709302.
[67] Kim J, Miskiewicz M N, Serati S. High efficiency quasi-ternary design for nonmechanical beam-steering utilizing polarization gratings [C]//Proceedings of SPIE, 2010, 7816: 78160G.
[68] Kim J, Miskiewicz M N, Serati S, et al. Demonstration of large-angle non-mechanical laser beam steering based on LC polymer polarization gratings [C]//Proceedings of SPIE, 2011, 8052: 80520T.
[69] Kim J, Miskiewicz M N, Serati S, et al. Nonmechanical laser beam steering based on polymer polarization gratings: design optimization and demonstration [J]. Journal of Lightwave Technology, 2015, 33(10): 2086-2077.
[70] Serati S, Hoy C L, Hosting L, et al. Large-aperture, wide-angle nonmechanical beam steering using polarization gratings [J]. Optical Engineering, 2016, 56(3): 031211. doi:  10.1117/1.OE.56.3.031211
[71] Xiang X, Kim J, Escuti M J. Bragg polarization gratings for wide angular bandwidth and high efficiency at steep deflection angles [J]. Scientific Reports, 2018, 8(1): 467-475. doi:  10.1038/s41598-017-18858-x
[72] 黄帅佳. 聚合物网络液晶器件及其光线偏转应用[D]. 上海: 上海交通大学, 2017.

Huang Shuaijia. The beam steering applications of polymer network liquid crystal devices[D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese)
[73] 王启东, 穆全全, 刘永刚, 等. 一种混合排列型双频液晶偏振光栅: CN108594540A[P]. 2018-09-28.
[74] 王启东, 陈万, 穆全全, 等. 一种双周期复合液晶偏振光栅: CN110646992A[P]. 2020-01-03.
[75] 李松振. 液晶偏振光栅的设计及其光偏转特性研究[D]. 中国科学院大学, 2019.

Li Songzhen. Design of liquid crystal polarization-n grating and study of its beam deflector characteristics[D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese)
[76] 刘冰, 王旭平, 杨玉国, 等. 基于钽铌酸钾二次电光效应的光束偏转原理、器件及应用[J]. 激光与光电子学进展, 2020, 57(07): 123-141.

Liu Bing, Wang Xuping, Yang Yuguo, et al. Principles, devices, and applications of beam deflection based on quadratic electro-optic effect of potassium tantalate niobate [J]. Laser & Optoelectronics Progress, 2020, 57(7): 071609. (in Chinese)
[77] 徐国昌. 四极电光偏转器的特性与设计[J]. 东南大学学报, 1992, 22(06): 13-17

Xu Guochang. The characteristics and design of the electro-optic deflector with quadrupole electrodes [J]. Journal of Southeast University, 1992, 22(6): 13-17. (in Chinese)
[78] 艾月霞, 李景镇, 龚向东. 超越曲面电极结构电光偏转器研究[J]. 光子学报, 2006, 35(01): 33-36.

Ai Yuexia, Li Jingzhen, Gong Xiangdong. Studies on electro-optic deflector with hypersurface electrode struture [J]. Acta Photonica Sinica, 2006, 35(1): 33-36. (in Chinese)
[79] Nakamura K, Miyazu J, Sasaura M, et al. Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNb xO3 [J]. Applied Physics Letters, 2006, 89(13): 131115. doi:  10.1063/1.2357335
[80] Nakamara K, Miyazu J, Sasaki Y, et al. Space-charge-controlled electro-optic effect: Optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction [J]. Journal of Applied Physics, 2008, 104(1): 013105. doi:  10.1063/1.2949394
[81] Miyazu J, Imai T, Toyoda S, et al. New beam scanning model for high-speed operation using KTa1−xNb xO3 crystals [J]. Applied Physics Express, 2011, 4(11): 111501. doi:  10.1143/APEX.4.111501
[82] Nakamara K, Miyazu J, Shogo Y. High-resolution KTN optical beam scanner [J]. NTT Technical Review, 2009, 7(12): 1-6.
[83] Sasaki Y, Okabe Y, Ueno M, et al. Resolution enhancement of KTa1−xNbxO3 electro-optic deflector by optical beam shaping [J]. Applied Physics Express, 2013, 6(10): 102201. doi:  10.7567/APEX.6.102201
[84] Imai T, Miyazu J, Kobayashi J. Charge distributions in KTa1−xNbxO3 optical beam deflectors formed by voltage application [J]. Optics Express, 2014, 22(12): 14114-14126. doi:  10.1364/OE.22.014114
[85] Sasaki Y, Toyoda S, Sakamoto T, et al. Electro-optic KTN deflector stabilized with 405 nm light irradiation for wavelength-swept light source [C]//Proceedings of SPIE, 2017, 10100: 101000H.
[86] Tatsumi S, Imai T, Yamaguchi J. Reduction of ambient temperature dependence of KTa1−xNbxO3 electro-optic deflector by double-thermistor structure [J]. Precision Engineering, 2019, 59(1): 150-155.
[87] Chao J H, Zhu W B, Wang C, et al. Nanosecond speed pre-injected space charge controlled KTN beam deflector [C]//Proceedings of SPIE, 2015, 9586: 95860T.
[88] Zhu W, Chao J H, Chen C J, et al. Photon excitation enabled large aperture space-charge-controlled potassium tantalate niobate (KTN) beam deflector [J]. Applied Physics Letters, 2018, 112(13): 132901. doi:  10.1063/1.5021958
[89] Kawamura S, Imai T, Miyazu J, et al. 2.5-fold increase in lens power of a KTN varifocal lens by employing an octagonal structure [J]. Applied Optics, 2015, 54(13): 4197-4201. doi:  10.1364/AO.54.004197
[90] Chen C J, Chao J H, Lee Y G, et al. Enhanced electro-optic beam deflection of relaxor ferroelectric KTN crystals by electric-field-induced high permittivity [J]. Optical Letters, 2019, 44(22): 5557-5560. doi:  10.1364/OL.44.005557
[91] Zhang J W, Du X P, Zhao J G, et al. Discrete electro-optic effect induced by multiscale nanoresonators [J]. Optical Materials, 2022, 127: 112271. doi:  10.1016/j.optmat.2022.112271
[92] Chen C J, Chao J H, Lee Y G, et al. Analysis on the electric field distribution in a relaxor ferroelectric KTN crystal near field-induced phase transition using optical deflection measurements [J]. Optics Express, 2020, 28(21): 31034-31042. doi:  10.1364/OE.400542
[93] Chen C J, Shang A N, Lee Y G, et al. Anomalous bi-directional scanning electro-optic KTN devices with UV-assisted electron and hole injections [J]. Optics Letters, 2020, 45(19): 5360-5363. doi:  10.1364/OL.404307
[94] Lee Y G, Chen C J, Shang A N, et al. Enhanced c-axis KTN beam deflector by compensating compositional gradient effect with a thermal gradient [J]. OSA Continuum, 2021, 4(2): 665-671. doi:  10.1364/OSAC.414124
[95] Tang Y J, Wang J Y, Wang X P, et al. KTN-based electro-optic beam scanner [C]//Proceedings of SPIE, 2008, 7135: 713538.
[96] Wang X P, Liu B, Yang Y G, et al. Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1-xNbxO3 crystal [J]. Applied Physics Letters, 2014, 105(5): 051910. doi:  10.1063/1.4892663
[97] 王爽. 铌酸锂晶体的温控光束偏转及其应用[D]. 哈尔滨工业大学, 2017.

Wang Shuang. The applied research of the temperature controlled light beam deflection based on lithium niobate crystal [D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
[98] Tian F, Lu H, Sui Z, et al. Electro-optic deflection in a lithium niobate quasi-single mode waveguide with microstructured electrodes [J]. Optics Express, 2018, 26(23): 30100-30107. doi:  10.1364/OE.26.030100
[99] 马相国. 光可编程电控光偏转理论与实验研究[D]. 天津大学, 2019

Ma Xiangguo. Study on the theory and experiment of optical programmable electronically controlled beam deflection [D]. Tianjin: Tianjin University, 2019. (in Chinese)
[100] 邢博涵. 铌酸锂晶体的可控倍频调制及偏转性能研究[D]. 黑龙江: 哈尔滨工业大学, 2021.

Xing Bohan. Study on controllable frequency doubling modulation and deflection properties of lithium niobate crystal [D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)