[1] Zhou Dejian, Cheng Lei. The domestic and international research situation of photoelectric interconnection technology[J]. Advanced Materials Research, 2013, 760-762:383-387.
[2] Tanaka K, Ide S, Tsunoda Y, et al. High-bandwidth optical interconnect technologies for next-generation server systems[J]. IEEE Micro, 2013, 33(1):6-13.
[3] Napierala M, Nasilowski T, BeresPawlik E, et al. Large-mode-area photonic crystal fiber with double lattice constant structure and low bending loss[J]. Optics Express, 2011, 19(23):22628-22636.
[4] Watekar P R, Ju S, Han W T. Single-mode optical fiber design with wide-band ultra-low bending-loss for FTTH application[J]. Optics Express, 2008, 16(2):1180-1185.
[5] Dong Fanlong, Zhao Fangzhou, Ge Tingwu, et al. Fiber bending impacts on beam quality of Yb-doped fiber laser[J]. Infrared and Laser Engineering, 2014, 43(11):3565-3569. (in Chinese)
[6] Gao Feng, Qin Li, Chen Yongyi, et al. Research progress of bent waveguide and its application[J].Chinese Optics, 2017, 10(2):176-193. (in Chinese)
[7] Wang Yanhong, Wang Gao, Hao Xiaojian. Reducing bandwidth of sapphire crystal fiber gratings based on rejecting higher order mode method[J]. Infrared and Laser Engineering, 2012, 41(11):3075-3078. (in Chinese)
[8] Zhang Huixin, Feng Lishuang. Design of twisted-pair type of frustrated total internal reflection passive fiber-optic liquid level sense measurement system[J]. Infrared and Laser Engineering, 2017, 46(12):1217001.
[9] Jiang Youchao, Ren Guobin, Lian Yudongn, et al. Multilayer-core fiber with a large mode area and a low bending loss[J]. Chinese Optics Letters, 2016, 14(12):41-45.
[10] Lian Yudong, Ren Guobin, Jiang Youchao, et al. Ultralow bending-loss trench-assisted single-mode optical fibers[J]. IEEE Photonics Technology Letters, 2017, 29(3):346-349.
[11] Ma Shaoshuo, Ning Tigang, Li Jing, et al. Design and analysis of a modified segmented cladding fiber with large mode area[J]. Optics Laser Technology, 2017, 88:172-179.
[12] Ma Shaoshuo, Ning Tigang, Li Pei, et al. Bend-resistant large mode area fiber with novel segmented cladding[J]. Optics Laser Technology, 2018, 98:113-120.
[13] Yan Dexian, Zhang Haiwei, Xu Degang, et al. Numerical study of compact terahertz gas laser based on photonic crystal fiber cavity[J]. Journal of Lightwave Technology, 2016, 34(14):3373-3378.
[14] Kabir S, Razzak S M A. An enhanced effective mode area fluorine doped octagonal photonic crystal fiber with extremely low loss[J]. Photonics Nanostructures, 2018, 29:1-6.
[15] Kabir S, Razzak S M A. Bending resistive improved effective mode area fluorine doped quadrilateral shaped core photonic crystal fiber for high power fiber lasers[J]. Optik, 2018, 162:206-213.
[16] Xu Zhongnan, Duan Kailiang, Liu Zejin, et al. Numerical analyses of splice losses of photonic crystal fibers[J]. Optics Communications, 2009, 282(23):4527-4531.
[17] Suzuki M, Tamura Y, Yamamoto Y, et al. Low-loss splice of large effective area fiber using fluorine-doped cladding standard effective area fiber[C]//Optical Fiber Communications Conference Exhibition. IEEE, 2017:M2F.4.
[18] Xiong Guoji, Huang Chunyue, Liang Ying, et al. Optimization design for TSV interconnect structure based on orthogonal experimental and grey relational analysis under random vibration load[J]. Transactions of the China Welding Institution, 2016, 37(7):22-26.