[1] Yin Junyan, Yin Fuchang, Chen Ming, et al. Impact on laser transmission in atmosphere[J]. Infrared and Laser Engineering, 2008, 37(S):399-402. (in Chinese)阴俊燕, 尹福昌, 陈明, 等. 影响激光大气传输因素分析[J]. 红外与激光工程, 2008, 37(S):399-402.
[2] Zheng Xiaojing, Zhang Jinghong. Characteristics of near-surface turbulence during a dust storm passing Minqin on March 19, 2010[J]. Chinese Sci Bull, 2010, 55(22):2235-2240. (in Chinese)郑晓静, 张静红. 2010年3月19日沙尘暴期间甘肃民勤地区近地表的湍流性质[J]. 科学通报, 2010, 55(22):2235-2240.
[3] Yuksel H, Milner S, Davis C C. Aperture averaging for optimizing receiver design and system performance on free-space optical communication links[J]. Journal of Optical Networking, 2005, 4(8):462-475.
[4] Tyson R K. Bit-error rate for free-space adaptive optics laser communications[J]. Journal of the Optical Society of America A Optics Image Science Vision, 2002, 19(4):753-758.
[5] Li Fei, Lu Houbing. Optimization method for detection threshold of atmospheric optical communication under weak turbulence condition[J]. Infrared and Laser Engineering, 2016, 45(12):1211004. (in Chinese)李菲, 路后兵. 弱湍流条件下大气光通信的阈值优化方法[J]. 红外与激光工程, 2016, 45(12):1211004.
[6] Niu Chaojun, Yu Shijie, Han Xiang'e. Analysis about effect of wavefront sensorless adaptive optics on optical communication[J]. Laser Optoelectronics Progress, 2015, 52(8):080102. (in Chinese)牛超君, 于诗杰, 韩香娥. 无波前探测自适应光学对光通信性能影响分析[J]. 激光与光电子学进展, 2015, 52(8):080102.
[7] Zhou Jianguo, Hao Shiqi, Liu Jialin, et al. Interleaver design based on genetic algorithm in atmospheric optical communication[J]. Chinese Journal of Lasers, 2013, 40(6):0605004. (in Chinese)周建国, 郝士琦, 刘加林,等. 大气激光通信中基于遗传算法的交织器设计[J]. 中国激光, 2013, 40(6):0605004.
[8] Wang J B, Jiao Y, Song X, et al. Optimal training sequences for indoor atmospheric optical communications[J]. Journal of Optics, 2012, 14(1):015401.
[9] Zhou Chao. Research on optical communication adaptive digital equalization based on LMS algorithm[D]. Chengdu:University of Electronic Science and Technology of China, 2018. (in Chinese)周超. 基于LMS算法的光通信自适应数字均衡技术研究[D]. 成都:电子科技大学, 2018.
[10] Kaushal H, Kumar V, Dutta A, et al. Experimental study on beam wander under varying atmospheric turbulence conditions[J]. IEEE Photonics Technology Letters, 2011, 23(22):1691-1693.
[11] Mishra N, Sriram K D, Jha P K. Performance analysis of dual-hop optical wireless communication systems over k-distribution turbulence channel with pointing error[C]//AIP Conference Proceedings, 2017, 1849(1):1-8.
[12] Gorshtein A, Levy O, Katz G, et al. Coherent compensation for 100G DP-QPSK with one sample per symbol based on antialiasing filtering and blind equalization MLSE[J]. IEEE Photonics Technology Letters, 2010, 22(16):1208-1210.
[13] Gorshtein A, Levy O, Katz G, et al. Blind channel estimation for MLSE receiver in high speed optical communications:theory and ASIC implementation[J]. Optics Express, 2013, 21(19):21766-21789.
[14] Zamani M, Chen C, Li C, et al. A blind channel estimation for 100+Gb/s optical IM-DD DMT over 100-km SMF in 1550nm[J]. IEEE Photonics Technology Letters, 2014, 26(19):1928-1931.
[15] Wang J B, Jiao Y, Xie X X, et al. Complementary sequences-based channel estimation for diffuse atmospheric optical communications[J]. Optical Engineering, 2011, 50(7):075003.
[16] Omomukuyo O, Chang D, Dobre O, et al. Ngatched, Robust frame and frequency synchronization based on alamouti coding for RGI-CO-OFDM[J]. IEEE Photonics Technology Letters, 2016, 28(24):2783-2786.
[17] Wu D, Wang Z, Wang R, et al. Channel estimation for asymmetrically clipped optical orthogonal frequency division multiplexing optical atmospheric communications[J]. Iet Communications, 2012, 6(5):532-540.
[18] Zhao H, Li M, Wang R, et al. Compressed sensing theory-based channel estimation for optical orthogonal frequency division multiplexing communication system[J]. Optics Communications, 2014, 326(5):94-99.
[19] Zhu C, Pittal F, Finkenbusch M, et al. Overhead-free channel estimation using implicit training for polarization-multiplexed coherent optical systems[C]//Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference IEEE, 2013:1-3.
[20] Chan K C, Huang W C, Li C P, et al. Elimination of data identification problem for data-dependent superimposed training[J]. IEEE Transactions on Signal Processing, 2015, 63(6):1595-1604.
[21] Fan S, Li Y, Wang L, et al. Comparison of implicit training and implicit pilot in coherent optical transmission[C]//International Conference on Optical Internet IEEE, 2014:1-2.
[22] Zhu Y J, Sun Z G, Zhang J, et al. Training receivers for repetition coded MISO outdoor visible light communications[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1):529-540.
[23] Dissanayake S D, Armstrong J. Novel techniques for combating DC offset in diversity combined ACO-OFDM[J]. IEEE Communications Letters, 2011, 15(11):1237-1239.
[24] Liu T. A novel method for demodulation of ACO-OFDM in the presence of DC offset[J]. Journal of the Franklin Institute, 2015, 352(3):802-812.
[25] Alameda-Hernandez E, Mclernon D C, Orozcolugo A G, et al. Frame/training sequence synchronization and DC-offset removal for(data-dependent) superimposed training based channel estimation[J]. IEEE Transactions on Signal Processing, 2007, 55(6):2557-2569.
[26] Wang Huiqin, Wang Yangang, Cao Minghua, et al. Impact of atmospheric visibility on laser intensity in sandy and dust weather[J]. Acta Photonica Sinica, 2015, 44(2):0229001. (in Chinese)王惠琴, 王彦刚, 曹明华, 等. 沙尘天气下大气能见度对激光光强的影响[J]. 光子学报, 2015, 44(2):0229001.