[1] Federici J, Moeller L. Eview of terahertz and subterahertz wireless communications[J]. Appl Phys, 2010, 107(11):111101.
[2] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3):910-928.
[3] Liu Zhaoyang, Liu Liyuan, Wu Nanjian. Imaging system based on CMOS terahertz detector[J]. Infrared and Laser Engineering, 2017, 46(1):01250001.(in Chinese)
[4] Luo Muchang, Sun Jiandong, Zhang Zhipeng, et al. Terahertz focal plane imaging array sensor based on AlGaN/GaN field effect transistors[J]. Infrared and Laser Engineering, 2018, 47(3):0320001. (in Chinese)
[5] Kosugi T, Shibata T, Enoki T, et al. A 120 GHz millimeter wave MMIC chipset for future broad band wireless application[J]. IEEE MTT-S Int. Microw Symp Dig, 2003, 2(1):129-132.
[6] Singh R, Chowdhury D R,Xiong J, et al. Influence of film thickness in THz active metamaterial devices:A comparison between superconductor and metal split-ring resonators[J]. Appl Phys Lett, 2013, 103(6):061117.
[7] Padilla W J, Taylor A J, Highstrete C, et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies[J]. Phys Rev Lett, 2006, 96:107401.
[8] Chae B G, Kim H T, Youn D H. Abrupt metal-insulator transition observed in VO2 thin films induced by a switching voltage pulse[J]. Physica B:Condensed Matter, 2005, 369(1-4):76-80.
[9] Dejene F B, Ocaya R O. Electrical, optical and structural properties of pure and gold-coated VO2 thin films on quartz substrate[J]. Current Applied Physics, 2010, 10(2):508-512.
[10] Rini M, Cavalleri A, Schoenlein R W. Photoinduced phase transition in VO2 nanocrystals:ultrafast control of surface-plasmon resonance[J]. Optics Letters, 2005, 30(5):558-560.
[11] Wen Q Y, Zhang H W, Yang Q H, et al. Terahertz metamaterials with VO2 cut-wires for thermal tenability[J]. Appl Phys Lett, 2010, 97(2):021111.
[12] Zhao Y, Lee J H, Zhu Y H, et al. Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates[J]. J Appl Phys, 2012, 111(5):053533.
[13] Pashkin A, Kubler C, Ehrke H, et al. Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy[J]. Phys Rev B, 2011, 83(19):195120.
[14] Shi Q W, W X Huang, J Wu, et al. Terahertz transmission characteristics across the phase transition in VO2 films deposited on Si, sapphire, and SiO2 substrates[J]. J Appl Phys, 2012, 112(3):033523.
[15] Mandal P, Speck A, Ko C, et al. Terahertz spectroscopy studies on epitaxial vanadium dioxide thin films across the metal-insulator transition[J]. Opt Lett, 2011, 36(10):1927-1929.
[16] Chen H T, Padilla W J, Ozide J M, et al. Active terahertz metamaterial devices[J]. Nature, 2006, 444(7119):597-600.
[17] Chen H T, Padilla W J, Cich M J, et al. A metamaterial solid-state terahertz phase modulator[J]. Nat Photonics, 2009, 3(3):148-151.
[18] Chan W L, Chen H, Taylor A J, et al. A spatial light modulator for terahertz beams[J]. Appl Phys Lett, 2009, 94(21):213511.
[19] Jeong Y G, Bernien H, Kyoung J S. Electrical control of terahertz nano antennas on VO2 thin film[J]. Opt Express, 2011, 19(22):21211-21215.
[20] Rini M, Tobey R, Dean N, et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation[J]. Nature (London), 2007, 444:72-74.
[21] Kbler C, Ehrke H, Huber R, et al. Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2[J]. Phys Rev Lett, 2007, 99:116401.
[22] Nakajima M, akuboN T, Hiroi Z, et al. Study of photo-induced phenomena in VO2 by terahertz pump-probe spectroscopy[J]. Journal of Luminescence, 2009, 129(12):1802-1805.
[23] Chen Z, Wen Q Y, Dong K, et al. Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films[J]. Chin Phys Lett, 2013, 30(1):017101.