[1] Plaue M. Technical report:analysis of the PMD imaging system[D]. Heidelberg:University of Heidelberg, 2006.
[2] Lange R. 3D time-of-flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology[D]. Siegen:University of Siegen, 2000.
[3] Falie D, Buzuloiu V. Noise characteristics of 3D time-of-flight cameras[C]//2007 International Symposium on Signals, Circuits and Systems. IEEE, 2007, 1:1-4.
[4] Lee C, Kim S Y, Choi B, et al. Depth error compensation for camera fusion system[J]. Optical Engineering, 2013, 52(7):073103.
[5] Schmidt M, Jhne B. A physical model of time-of-flight 3D imaging systems, including suppression of ambient light[C]//Workshop on Dynamic 3D Imaging, 2009:1-15.
[6] Dorrington A A, Cree M J, Carnegie D A, et al. Video-rate or high-precision:A flexible range imaging camera[C]//SPIE, 6813:681307.
[7] Fuchs S, May S. Calibration and registration for precise surface reconstruction with time-of-flight cameras[J]. International Journal of Intelligent Systems Technologies and Applications, 2008, 5(3-4):274-284.
[8] Lindner M, Kolb A. Lateral and depth calibration of PMD-distance sensors[C]//International Symposium on Visual Computing, 2006:524-533.
[9] Fersch T, Weigel R, Koelpin A. A CDMA modulation technique for automotive time-of-flight LiDAR systems[J]. IEEE Sensors Journal, 2017, 17(11):3507-3516.
[10] Ai X, Nock R, Rarity J G, et al. High-resolution random-modulation cw lidar[J]. Applied Optics, 2011, 50(22):4478-4488.
[11] Atalar O, Van Laer R, Sarabalis C J, et al. Time-of-flight imaging system on resonant photoelastic modulation[J]. Applied Optics, 2019, 58(9):2235-2247.
[12] Gupta M, Nayar S, Velten A, et al. A geometric perspective on time-of-flight camera design[C]//SPIE, 2019, 10889:1088902.
[13] Jongenelen A P P, Bailey D G, Payne A D, et al. Analysis of errors in tof range imaging with dual-frequency modulation[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(5):1861-1868.
[14] Jimenez D, Pizarro D, Mazo M, et al. Modelling and correction of multipath interference in time of flight cameras[J]. Image Vision Computing, 2014, 32(1):1-13.
[15] Karel W, Ghuffar S, Pfeifer N. Quantifying the distortion of distance observations caused by scattering in time-of-flight range cameras[J]. International Archives of Photogrammetry, 2010, 38(5):316-321.
[16] Reynolds M, Dobos J, Peel L, et al. Capturing time-of-flight data with confidence[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011:945-952.
[17] Cui Y, Schuon S, Chan D, et al. 3D shape scanning with a time-of-flight camera[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2010:1173-1180.
[18] Marco J, Hernandez Q, Munoz A, et al. DeepToF:off-the-shelf real-time correction of multipath interference in time-of-flight imaging[J]. ACM Transactions on Graphics (ToG), 2017, 36(6):219.
[19] Zach G, Davidovic M, Zimmermann H. A 1616 pixel distance sensor with in-pixel circuitry that tolerates 150 klx of ambient light[J]. IEEE J Solid-State Circuits, 2010, 45(7):1345-1353.
[20] Zach G, Zimmermann H. A 232 range-finding sensor array with pixel-inherent suppression of ambient light up to 120klx[C]//2009 IEEE International Solid-State Circuits Conference-Digest of Technical Papers, IEEE, 2009:352-353.
[21] Sawada T, Kawahito S, Nakayama M, et al. A TOF range image sensor with an ambient light charge drain and small duty-cycle light pulse[C]//International Image Sensor Workshop, 2007:254-257.