[1] Tsai S L, Wu J S, Lin H J, et al. Simulation and design of InGaAsN metal-semiconductor-metal photodetectors for long wavelength optical communications [J]. Physica Status Solidi (c), 2008, 5(6): 2167-2169. doi:  10.1002/pssc.200778510
[2] Park H, Dan Y P, Seo K, et al. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption [J]. Nano Letters, 2014, 14(4): 1804-1809. doi:  10.1021/nl404379w
[3] 薛莉, 翟东升, 李祝莲, 等. 激光测距中APD阵列探测信噪比分析[J]. 红外与激光工程, 2017, 46(3): 0306001.

Xue Li, Zhai Dongsheng, Li Zhulian, et al. Signal-to-noise ratio analysis on APD arrays in laser ranging [J]. Infrared and Laser Engineering, 2017, 46(3): 0306001. (in Chinese)
[4] Rao G A, Mahulikar S P. New criterion for aircraft susceptibility to infrared guided missiles [J]. Aerospace Science & Technology, 2005, 9(8): 701-712.
[5] Chiou Y Z, Su Y K, Chang S J, et al. High detectivity InGaN-GaN multiquantum well p-n junction photodiodes [J]. IEEE Journal of Quantum Electronics, 2003, 39(5): 681-685. doi:  10.1109/JQE.2003.810262
[6] Dehlinger G, Koester S J, Schaub J D, et al. High-speed Germanium-on-SOI lateral PIN photodiodes [J]. Photonics Technology Letters IEEE, 2004, 16(11): 2547-2549. doi:  10.1109/LPT.2004.835631
[7] 史衍丽, 郭骞, 李龙, 等. 可见光拓展InP/InGaAs宽光谱红外探测器[J]. 红外与激光工程, 2015, 44(11): 3177-3180. doi:  10.3969/j.issn.1007-2276.2015.11.002

Shi Yanli, Guo Qian, Li Long, et al. Visible-extended InP/InGaAs wide spectrum response infrared detectors [J]. Infrared and Laser Engineering, 2015, 44(11): 3177-3180. (in Chinese) doi:  10.3969/j.issn.1007-2276.2015.11.002
[8] 宋海兰, 黄辉, 崔海林, 等. InGaAs/Si雪崩光电二极管[J]. 半导体光电, 2010, 31(5): 702-704.

Song Hailan, Huang Hui, Cui Hailin, et al. InGaAs/Si avalanche photodiodes [J]. Semiconductor Optoelectronics, 2010, 31(5): 702-704. (in Chinese)
[9] Reine M B, Marciniec J W, Wong K K, et al. HgCdTe MWIR back-illuminated electron-initiated avalanche photodiode arrays [J]. Journal of Electronic Materials, 2007, 36(8): 1059-1067. doi:  10.1007/s11664-007-0172-y
[10] 张健亮, 陈康民. PIN结光电二极管的工艺原理和制造[J]. 中国集成电路, 2004(9): 72-74. doi:  10.3969/j.issn.1681-5289.2004.09.018

Zhang Jianliang, Chen Kangmin. The principle process and manufacturing of PIN junction photodiode [J]. China Integrated Circuit, 2004(9): 72-74. (in Chinese) doi:  10.3969/j.issn.1681-5289.2004.09.018
[11] 杨成珠, 李庆文. 硅光电探测器[J]. 半导体技术, 1983, 6: 57-63.

Yang Chengzhu, Li Qingwen. Silicon photodetector [J]. Semiconductor Technology, 1983, 6: 57-63. (in Chinese)
[12] Omnès F, Monroy E, Reverchon J L. Wide bandgap UV photodetectors: a short review of devices and applications[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2007, 6473: 6473E.
[13] 魏佳童, 陈立伟, 胡海帆, 等. 基于硅与锗材料的改进集成雪崩光电二极管[J]. 红外与激光工程, 2016, 45(s1): S120002.

Wei Jiatong, Chen Liwei, Hu Haifan, et al. An advanced integrated avalanche photodiode with Si and Ge material [J]. Infrared and Laser Engineering, 2016, 45(s1): S120002. (in Chinese)
[14] Sze S M, Coleman D J, Loya A. Current transport in metal-semiconductor-metal (MSM) structures [J]. Solid-State Electronics, 1971, 14(12): 1209-1218. doi:  10.1016/0038-1101(71)90109-2
[15] Chen Y, Williamson S, Brock T, et al. 375-GHz-bandwidth photoconductive detector [J]. Applied Physics Letters, 1991, 59(16): 1984-1986. doi:  10.1063/1.106157
[16] Smith F W, Le H Q, Diadiuk V, et al. Picosecond GaAs-based photoconductive optoelectronic detectors [J]. Applied Physics Letters, 1989, 54(10): 890-892. doi:  10.1063/1.100800
[17] Roth W, Schumacher H, Kluge J, et al. The DSI diode-A fast large-area optoelectronic detector [J]. IEEE Transactions on Electron Devices, 1985, 32(6): 1034-1036. doi:  10.1109/T-ED.1985.22069
[18] Yuang R H, Shieh J L, Chyi J I, et al. Overall performance improvement in GaAs MSM photodetectors by using recessed-cathode structure [J]. IEEE Photonics Technology Letters, 1997, 9(2): 226-228. doi:  10.1109/68.553100
[19] 李勇, 李刚, 沈洪斌, 等. InGaAs-MSM光电探测器设计与仿真研究[J]. 应用光学, 2016, 37(5): 651-656.

Li Yong, Li Gang, Shen Hongbin, et al. Design and simulation research of InGaAs-MSM photodetector [J]. Journal of Applied Optics, 2016, 37(5): 651-656. (in Chinese)
[20] Rogers D L, Woodall J M, Pettit G D, et al. VIA-8 high-performance GaInAs interdigitated-metal- semiconductor-metal (IMSM) 1.3-<italic>μ</italic>m photodetector grown on a GaAs substrate [J]. IEEE Transactions on Electron Devices, 1987, 34(11): 2383-2384.
[21] Bassous E, Scheuermann M, Kesan V P, et al. A high-speed silicon metal-semiconductor-metal photodetector fully integrable with (Bi) CMOS circuits[C]//International Electron Devices Meeting 1991[Technical Digest], 1991: 187-190.
[22] Alexandrou S, Wang C C, Hsiang T Y, et al. A 75 GHz silicon metal‐semiconductor‐metal Schottky photodiode [J]. Applied Physics Letters, 1993, 62(20): 2507-2509. doi:  10.1063/1.109337
[23] Mondia J P, Sharma R, Schaefer J, et al. An electrodynamically confined single ZnO tetrapod laser [J]. Applied Physics Letters, 2008, 93(12): 121102. doi:  10.1063/1.2987520
[24] Özgür Ü, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. Journal of Applied Physics, 2005, 98(4): 041301. doi:  10.1063/1.1992666
[25] Zhou W J, Jin K J, Guo H Z, et al. Electrode effect on high-detectivity ultraviolet photodetectors based on perovskite oxides [J]. Journal of Applied Physics, 2013, 114(22): 224503. doi:  10.1063/1.4845775
[26] Wu K, Zhan Y H, Zhang C, et al. Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application [J]. Scientific Reports, 2015, 5: 14304. doi:  10.1038/srep14304
[27] Zhai T Y, Li L, Wang X, et al. Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors [J]. Advanced Functional Materials, 2010, 20(24): 4233-4248.
[28] Sugeta T, Urisu T, Sakata S, et al. Metal-semiconductor-metal photodetector for high-speed optoelectronic circuits [J]. Japanese Journal of Applied Physics, 1980, 19(S1): 459-464. doi:  10.7567/JJAPS.19S1.459
[29] 施敏, 伍国珏. 半导体器件物理[M]. 耿莉, 张瑞智, 译. 第3版. 西安: 西安交通大学出版社, 2008.

Sze S M, Ng K K. Physics of Semiconductor Devices[M]. Translated by John wiley, Sons, The third edition, Xi'an: Xi'an Jiaotong University Press, 2008.(in Chinese)
[30] Gibbons G, Sze S M. Avalanche breakdown in read diodes and pin diodes [J]. Solid-State Electronics, 1968, 11(2): 225-232. doi:  10.1016/0038-1101(68)90083-X
[31] Katsume T, Hiramoto M, Yokoyama M. Photocurrent multiplication in naphthalene tetracarboxylic anhydride film at room temperature [J]. Applied Physics Letters, 1996, 69(24): 3722-3724. doi:  10.1063/1.117201
[32] Li L L, Zhang F J, Wang J, et al. Achieving EQE of 16, 700% in P3HT:PC71BM based photodetectors by trap-assisted photomultiplication [J]. Scientific Reports, 2015, 5: 9181. doi:  10.1038/srep09181
[33] Wang W B, Zhang F J, Bai H T, et al. Photomultiplication photodetectors with P3HT:fullerene-free material as the active layers exhibiting a broad response [J]. Nanoscale, 2016, 8(10): 5578-5586. doi:  10.1039/C6NR00079G
[34] Schumacher H, Leblanc H P, Soole J, et al. An investigation of the optoelectronic response of GaAs/InGaAs MSM photodetectors [J]. IEEE Electron Device Letters, 1988, 9(11): 607-609. doi:  10.1109/55.9291
[35] Soole J B D, Schumacher H, Esagui R, et al. Waveguide integrated MSM photodetector for the 1.3 μm-1.6 μm wavelength range[C]//Electron Devices Meeting 1988[Technical Digest], 1988: 483-486.
[36] Zhang Y, Deng W, Zhang X, et al. In situ integration of squaraine-nanowire-array-based Schottky-type photodetectors with enhanced switching performance [J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12288-12294.
[37] Li Wei, Valentine J G. Harvesting the loss: surface plasmon-based hot electron photodetection [J]. Nanophotonics, 2016, 6(1): 177-191.
[38] Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology [J]. Nature Nanotechnology, 2015, 10(1): 25-34. doi:  10.1038/nnano.2014.311
[39] Casalino M, Coppola G, La Rue R M, et al. State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths [J]. Laser & Photonics Reviews, 2016, 10(6): 895-921.
[40] Sze S M, Crowell C R, Carey G P, et al. Hot-Electron Transport in Semiconductor-Metal-Semiconductor Structures [J]. Journal of Applied Physics, 1966, 37(7): 2690-2695. doi:  10.1063/1.1782104
[41] Wang F M, Melosh N A. Plasmonic energy collection through hot carrier extraction [J]. Nano Letters, 2011, 11(12): 5426-5430. doi:  10.1021/nl203196z
[42] Chalabi H, Schoen D, Brongersma M L. Hot-electron photodetection with a plasmonic nanostripe antenna [J]. Nano Letters, 2014, 14(3): 1374-1380. doi:  10.1021/nl4044373
[43] Gong T, Munday J N. Angle-independent hot carrier generation and collection using transparent conducting oxides [J]. Nano Letters, 2015, 15(1): 147-152. doi:  10.1021/nl503246h
[44] Kosonocky W F. Review of Schottky-barrier imager technology[C]//Infrared Detectors and Focal Plane Arrays. International Society for Optics and Photonics, 1990, 1308: 2-27.
[45] Boriskina S V, Zhou J W, Hsu W C, et al. Limiting efficiencies of solar energy conversion and photo-detection via internal emission of hot electrons and hot holes in gold[C]//Infrared Remote Sensing and Instrumentation XXⅢ. International Society for Optics and Photonics, 2015, 9608: 960816.
[46] Munday J N, Gong T. Materials for hot carrier plasmonics[Invited] [J]. Optical Materials Express, 2015, 5(11): 2501-2512. doi:  10.1364/OME.5.002501
[47] 李志奇, 王庆康, 李晓明, 等. 新型GaAs MSM结构光电二极管的直流光电特性[J]. 上海半导体, 1990(1): 1-4.

Li Zhiqi, Wang Qingkang, Li Xiaoming, et al. DC photoelectric properties of new type GaAs MSM photodiode [J]. Shanghai Semiconductor, 1990(1): 1-4. (in Chinese)
[48] Rao M V, Bhattacharya P K, Chen C Y. Low-noise In0.53Ga0.47As:Fe photoconductive detectors for optical communication [J]. IEEE Transactions on Electron Devices, 2005, 33(1): 67-71.
[49] Huang H L, Xie Y N, Yang W F, et al. Low-dark-current TiO<sub>2</sub> MSM UV photodetectors with Pt Schottky contacts [J]. IEEE Electron Device Letters, 2011, 32(4): 530-532. doi:  10.1109/LED.2011.2104354
[50] 王庆康, 冯胜. GaAs MSM光电探测器暗电流特性[J]. 半导体光电, 1995(4): 336-338.

Wang Qingkang, Feng Sheng. Dark current property of GaAs MSM photodetectors [J]. Semiconductor Optoelectronics, 1995(4): 336-338. (in Chinese)
[51] Wang S Y, Bloom D M. 100 GHz bandwidth planar GaAs Schottky photodiode [J]. Electronics Letters, 1983, 19(14): 554-555. doi:  10.1049/el:19830376
[52] Van Zeghbroeck B J, Patrick W, Halbout J M, et al. 105-GHz bandwidth metal-semiconductor-metal photodiode [J]. IEEE Electron Device Letters, 1988, 9(10): 527-529. doi:  10.1109/55.17833
[53] Chou S Y, Liu Y, Khalil W, et al. Ultrafast nanoscale metal-semiconductor-metal photodetectors on bulk and low-temperature grown GaAs [J]. Applied Physics Letters, 1992, 61(7): 819-821. doi:  10.1063/1.107755
[54] Nikolic P L, Gvozdic D M, Radunovic J B. Pulse response of a resonant cavity enhanced metal-semiconductor-metal photodetector[C]//21st International Conference on Microelectronics. IEEE, 1997, 1: 327-330.
[55] Karar A, Das N, Tan C L, et al. High-responsivity plasmonics-based GaAs metal-semiconductor-metal photodetectors [J]. Applied Physics Letters, 2011, 99: 133112. doi:  10.1063/1.3625937
[56] Nabet B, Currie M, Dianat P, et al. High-speed, high-sensitivity optoelectronic device with bilayer electron and hole charge plasma [J]. ACS Photonics, 2014, 1(7): 560-569. doi:  10.1021/ph4001229
[57] Lee C T, Lee H Y. Surface passivated function of GaAs MSM-PDs using photoelectrochemical oxidation method [J]. IEEE Photonics Technology Letters, 2005, 17(2): 462-464. doi:  10.1109/LPT.2004.839447
[58] Sharaf R, Daneshmandi O, Ghayour R, et al. A new GaAs metal-semiconductor-metal photodetector based on hybrid plasmonic structure to improve the optical and electrical responses [J]. Plasmonics, 2015, 11(2): 441-448.
[59] Neutens P, Van Dorpe P, De Vlaminck I, et al. Electrical detection of confined gap plasmons in metal-insulator-metal waveguides [J]. Nature Photonics, 2009, 3(5): 283-286. doi:  10.1038/nphoton.2009.47
[60] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 第7版. 北京: 电子工业出版社, 2011: 256-266.

Liu Enke, Zhu Bingsheng, Luo Jinsheng. The Physics of Semiconductors[M]. The 7th edition. Beijing: Publishing House of Electronics Industry, 2011: 256-266. (in Chinese)
[61] Litvin K I, Burm J, Woodard D W, et al. High-speed MSM photodetectors for millimeter waves[C]//Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas Ⅲ. International Society for Optics and Photonics, 1992, 1703: 313-321.
[62] Nabet B. A heterojunction metal-semiconductor-metal photodetector [J]. IEEE Photonics Technology Letters, 1997, 9(2): 223-225. doi:  10.1109/68.553099
[63] 潘青. 用InGaAs材料制作的2.6 μm光电探测器[J]. 半导体光电, 1999, 20(2): 79-82. doi:  10.3969/j.issn.1001-5868.1999.02.002

Pan Qing. 2.6 μm InGaAs photodetector [J]. Semiconductor Optoelectronics, 1999, 20(2): 79-82. (in Chinese) doi:  10.3969/j.issn.1001-5868.1999.02.002
[64] Hoogeveen R W M, Goede A P H. Extended wavelength InGaAs infrared (1.0-2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere [J]. Infrared Physics & Technology, 2001, 42(1): 1-16.
[65] Böttcher E H, Pfitzenmaier H, Dröge E, et al. Millimetre-wave coplanar waveguide slow wave transmission lines on InP [J]. Electronics Letters, 1996, 32(15): 1377-1378. doi:  10.1049/el:19960919
[66] Hurm V, Benz W, Bronner W, et al. 20 Gbit/s long wavelength monolithic integrated photoreceiver grown on GaAs [J]. Electronics Letters, 1997, 33(7): 624-626. doi:  10.1049/el:19970379
[67] Shi C X, Grutzmacher D, Stollenwerk M, et al. High-performance undoped InP/n-In<sub>0.53</sub>Ga<sub>0.47</sub>As MSM photodetectors grown by LP-MOVPE [J]. IEEE Transactions on Electron Devices, 1992, 39(5): 1028-1031. doi:  10.1109/16.129078
[68] 史常忻, Heime K. 长波长低暗电流高速In0.53Ga0.47As MSM光电探测器[J]. 半导体学报, 1991, 12: 767-770. doi:  10.3321/j.issn:0253-4177.1991.12.010

Shi Changxin, Heime K. Long-Wavelength low dark current high speed In0.53Ga0.47As MSM photodetectors [J]. Chinese Journal of Semiconductors, 1991, 12: 767-770. (in Chinese) doi:  10.3321/j.issn:0253-4177.1991.12.010
[69] Böttcher E H, Kuhl D, Hieronymi F, et al. Ultrafast semiinsulating InP:Fe-InGaAs:Fe-InP:Fe MSM photodetectors: modeling and performance [J]. IEEE Journal of Quantum Electronics, 1992, 28(10): 2343-2357. doi:  10.1109/3.159541
[70] Kim J H, Griem H T, Friedman R A, et al. High-performance back-illuminated InGaAs/lnAlAs MSM photodetector with a record responsivity of 0.96 A/W [J]. IEEE Photonics Technology Letters, 1992, 4(11): 1241-1244. doi:  10.1109/68.166955
[71] Yuang R H, Chyi J I, Chan Y J, et al. High-responsivity InGaAs MSM photodetectors with semi-transparent Schottky contacts [J]. IEEE Photonics Technology Letters, 1995, 7(11): 1333-1335. doi:  10.1109/68.473489
[72] Klockenbrink R, Wehmann H H, Schlachetzki A. Improved thermal stability of In0.53Ga0.47As metal-semiconductor-metal photodetectors with Al2O3 interfacial layer [J]. Photonics Technology Letters IEEE, 1994, 6(10): 1213-1215. doi:  10.1109/68.329642
[73] Davidson A C, Wise F W, Compton R C, et al. High-performance MSM photodetectors using Cu Schottky contacts [J]. IEEE Photonics Technology Letters, 1997, 9(5): 657-659. doi:  10.1109/68.588185
[74] Yuang R H, Shieh H C, Chien Y J, et al. High-performance large-area InGaAs MSM photodetectors with a pseudomorphic InGaP cap layer [J]. IEEE Photonics Technology Letters, 1995, 7(8): 914-916. doi:  10.1109/68.404013
[75] Pang Z, Song K C, Mascher P, et al. Sulfur passivation of InP/InGaAs metal-semiconductor-metal photodetectors [J]. Journal of The Electrochemical Society, 1999, 146(5): 1946-1951. doi:  10.1149/1.1391871
[76] Chiu W Y, Huang F H, Wu Y S, et al. Improvement of mesa-sidewall leakage current using benzocyclobuten sidewall process in InGaAs/InP MSM photodetector [J]. Japanese Journal of Applied Physics, 2005, 44(4): 2586-2587.
[77] Kim J, Johnson W B, Kanakaraju S, et al. Improvement of dark current using InP/InGaAsP transition layer in large-area InGaAs MSM photodetectors [J]. IEEE Transactions on Electron Devices, 2004, 51(3): 351-356. doi:  10.1109/TED.2003.822276
[78] Hsiang T Y, Alexandrou S, Wang C C, et al. Picosecond silicon metal-semiconductor-metal photodiode[C]//Photodetectors and Power Meters. International Society for Optics and Photonics, 1993, 2022: 76-83.
[79] Lee H C, Van Zeghbroeck B. Novel high-speed silicon MSM photodetector operating at 830 nm wavelength [J]. IEEE Electron Device Letters, 1995, 16(5): 175-177. doi:  10.1109/55.382231
[80] Ho J Y L, Wong K S. Bandwidth enhancement in silicon metal-semiconductor-metal photodetector by trench formation [J]. IEEE Photonics Technology Letters, 1996, 8(8): 1064-1066. doi:  10.1109/68.508739
[81] Chui C O, Okyay A K, Saraswat K C. Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors [J]. IEEE Photonics Technology Letters, 2003, 15(11): 1585-1587. doi:  10.1109/LPT.2003.818683
[82] Okyay A K, Chui C O, Saraswat K C. Leakage suppression by asymmetric area electrodes in metal-semiconductor-metal photodetectors [J]. Applied Physics Letters, 2006, 88(6): 063506. doi:  10.1063/1.2171648
[83] Colace L, Masini G, Galluzzi F, et al. Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si [J]. Applied Physics Letters, 1998, 72(24): 3175-3177. doi:  10.1063/1.121584
[84] Okyay A K, Nayfeh A M, Saraswat K C, et al. High-efficiency metal-semiconductor-metal photodetectors on heteroepitaxially grown Ge on Si [J]. Optics Letters, 2006, 31(17): 2565-2567. doi:  10.1364/OL.31.002565
[85] Ciftcioglu B, Zhang J, Sobolewski R, et al. An 850-nm normal-incidence Germanium metal-semiconductor-metal photodetector with 13-GHz bandwidth and 8-μA dark current [J]. IEEE Photonics Technology Letters, 2010, 22(24): 1850-1852. doi:  10.1109/LPT.2010.2089506
[86] Li B J, Li G Z, Liu E K, et al. Monolithic integration of a SiGe/Si modulator and multiple quantum well photodetector for 1.55 <italic>μ</italic>m operation [J]. Applied Physics Letters, 1998, 73(24): 3504-3505. doi:  10.1063/1.122818
[87] Hwang J D, Chang W T, Chen Y H, et al. Suppressing the dark current of metal-semiconductor-metal SiGe/Si heterojunction photodetector by using asymmetric structure [J]. Thin Solid Films, 2007, 515(7-8): 3837-3839. doi:  10.1016/j.tsf.2006.10.017
[88] 张诗雨, 洪霞, 方旭, 等. 非对称面电极硅基锗金属-半导体-金属光电探测器的设计[J]. 光电工程, 2015, 42(1): 84-88. doi:  10.3969/j.issn.1003-501X.2015.01.014

Zhang Shiyu, Hong Xia, Fang Xu, et al. Design of silicon based Germanium metal-semiconductor-metal photodetector with asymmetric area electrodes [J]. Opto-Electronic Engineering, 2015, 42(1): 84-88. (in Chinese) doi:  10.3969/j.issn.1003-501X.2015.01.014
[89] Park J H, Yu H Y. Dark current suppression in an erbium-Germanium-erbium photodetector with an asymmetric electrode area [J]. Optics Letters, 2011, 36(7): 1182-1184. doi:  10.1364/OL.36.001182
[90] Ang K W, Yu M B, Zhu S Y, et al. Novel NiGe MSM photodetector featuring asymmetrical schottky barriers using sulfur co-implantation and segregation [J]. IEEE Electron Device Letters, 2008, 29(7): 708-710. doi:  10.1109/LED.2008.923541
[91] Zang H, Lee S J, Loh W Y, et al. Application of dopant segregation to metal-germanium-metal photodetectors and its dark current suppression mechanism [J]. Applied Physics Letters, 2008, 92(5): 051110. doi:  10.1063/1.2841061
[92] Liu X H, Yu D J, Cao F, et al. Low-voltage photodetectors with high responsivity based on solution-processed micrometer-scale all-inorganic perovskite nanoplatelets [J]. Small, 2017, 13(25): 1700364. doi:  10.1002/smll.201700364
[93] Ramasamy P, Lim D H, Kim B, et al. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications [J]. Chemical Communications, 2016, 52(10): 2067-2070. doi:  10.1039/C5CC08643D
[94] Wang A F, Yan X X, Zhang M, et al. Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process [J]. Chemistry of Materials, 2016, 28(22): 8132-8140. doi:  10.1021/acs.chemmater.6b01329
[95] Urich A, Unterrainer K, Mueller T. Intrinsic response time of graphene photodetectors [J]. Nano Letters, 2011, 11(7): 2804-2808. doi:  10.1021/nl2011388
[96] Xu Y, Ali A, Shehzad K, et al. Solvent-based soft-patterning of graphene lateral heterostructures for broadband high-speed metal-semiconductor-metal photodetectors [J]. Advanced Materials Technologies, 2017, 2(2): 1600241. doi:  10.1002/admt.201600241
[97] Tsai D S, Liu K K, Lien D H, et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments [J]. ACS Nano, 2013, 7(5): 3905-3911. doi:  10.1021/nn305301b
[98] Khadka S, Wickramasinghe T E, Lindquist M, et al. As-grown two-dimensional MoS2 based photodetectors with naturally formed contacts [J]. Applied Physics Letters, 2017, 110(26): 261109. doi:  10.1063/1.4990968
[99] Ahmadi M, Wu T, Hu B. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics [J]. Advanced Materials, 2017, 29(41): 1605242. doi:  10.1002/adma.201605242
[100] Tian W, Zhou H P, Li L. Hybrid organic-inorganic perovskite photodetectors [J]. Small, 2017, 13(41): 1702107. doi:  10.1002/smll.201702107
[101] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669. doi:  10.1126/science.1102896
[102] Song S C, Chen Q, Jin L, et al. Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber [J]. Nanoscale, 2013, 5(20): 9615-9619. doi:  10.1039/c3nr03505k
[103] Ge J Y, Luo M L, Zou W H, et al. Plasmonic photodetectors based on asymmetric nanogap electrodes [J]. Applied Physics Express, 2016, 9(8): 084101. doi:  10.7567/APEX.9.084101
[104] Heiblum M, Wang S H, Whinnery J, et al. Characteristics of integrated MOM junctions at dc and at optical frequencies [J]. IEEE Journal of Quantum Electronics, 1978, 14(3): 159-169. doi:  10.1109/JQE.1978.1069765
[105] Cui Y X, Fung K H, Xu J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab [J]. Nano letters, 2012, 12(3): 1443-1447. doi:  10.1021/nl204118h
[106] Cui Y X, He Y R, Jin Y, et al. Plasmonic and metamaterial structures as electromagnetic absorbers [J]. Laser & Photonics Reviews, 2014, 8(4): 495-520.
[107] Sobhani A, Knight M W, Wang Y M, et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device [J]. Nature Communications, 2013, 4: 1643. doi:  10.1038/ncomms2642
[108] Wen L, Chen Y F, Liang L, et al. Hot electron harvesting via photoelectric ejection and photothermal heat relaxation in hotspots-enriched plasmonic/photonic disordered nano-composites [J]. ACS Photonics, 2018, 5(2): 581-591.
[109] Li W, Valentine J. Metamaterial perfect absorber based hot electron photodetection [J]. Nano Letters, 2014, 14(6): 3510-3514. doi:  10.1021/nl501090w
[110] Lin K T, Chen H L, Lai Y S, et al. Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths [J]. Nature Communications, 2014, 5: 3288. doi:  10.1038/ncomms4288
[111] Lu Y H, Dong W, Chen Z, et al. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation [J]. Scientific Reports, 2016, 6: 30650. doi:  10.1038/srep30650
[112] Wang W Y, Klots A, Prasai D, et al. Hot electron-based near-infrared photodetection using bilayer MoS2 [J]. Nano Letters, 2015, 15(11): 7440-7444. doi:  10.1021/acs.nanolett.5b02866
[113] Arquer F P G D, Mihi A, Konstantatos G. Large-area plasmonic-crystal hot-electron based photodetectors [J]. ACS Photonics, 2015, 2(7): 950-957. doi:  10.1021/acsphotonics.5b00149
[114] Li W, Coppens Z J, Besteiro L V, et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials [J]. Nature Communications, 2015, 6: 8379. doi:  10.1038/ncomms9379
[115] Chou J B, Li X H, Wang Y, et al. Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals [J]. Optics Express, 2016, 24(18): A1234-A1244. doi:  10.1364/OE.24.0A1234
[116] Sobhani A, Lauchner A, Najmaei S, et al. Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells [J]. Applied Physics Letters, 2014, 104(3): 031112. doi:  10.1063/1.4862745
[117] Wen L, Chen Y F, Liu W W, et al. Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and omni-schottky Junction [J]. Laser & Photonics Reviews, 2017, 11(5): 1700059.
[118] Sun M W, Xu Z, Yin M, et al. Broad-band three dimensional nanocave ZnO thin film photodetectors enhanced by Au surface plasmon resonance [J]. Nanoscale, 2016, 8(16): 8924-8930. doi:  10.1039/C6NR00089D
[119] Zhang C, Wu K, Giannini V, et al. Planar hot-electron photodetection with tamm plasmons [J]. ACS Nano, 2017, 11(2): 1719-1727. doi:  10.1021/acsnano.6b07578
[120] Lin Y Y, Cui Y X, Ding F, et al. Tungsten based anisotropic metamaterial as an ultra-broadband absorber [J]. Optical Materials Express, 2017, 7(2): 606-617. doi:  10.1364/OME.7.000606
[121] Sakhdari M, Hajizadegan M, Farhat M, et al. Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials [J]. Nano Energy, 2016, 26: 371-381. doi:  10.1016/j.nanoen.2016.05.037