[1] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-Modern techniques and applications [J]. Laser & Photonics Reviews, 2011, 5(1): 1-43.
[2] Hangyo M. Development and future prospects of terahertz technology [J]. Japanese Journal of Applied Physics, 2015, 54(12): 120101. doi:  10.7567/JJAP.54.120101
[3] Chan W, Deibel J, Mittleman D. Imaging with terahertz radiation [J]. Reports on Progress in Physics, 2007, 70(8): 1325-1379. doi:  10.1088/0034-4885/70/8/R02
[4] Ji H, Zhang B, Wang G, et al. Photo-excited multi-frequency terahertz switch based on a composite metamaterial structure [J]. Optics Communications, 2018, 412: 37-40. doi:  10.1016/j.optcom.2017.11.080
[5] Liu X, Fan K, Shadrivov I V, et al. Experimental realization of a terahertz all-dielectric metasurface absorber [J]. Optics Express, 2017, 25(1): 191-210. doi:  10.1364/OE.25.000191
[6] Padilla W J, Taylor A J, Highstrete C, et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies [J]. Physical Review Letters, 2006, 96(10): 107401. doi:  10.1103/PhysRevLett.96.107401
[7] Zhao X, Schalch J, Zhang J, et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies [J]. Optica, 2018, 5(3): 303-310. doi:  10.1364/OPTICA.5.000303
[8] Padilla W J, Basov D N, Smith D R. Negative refractive index metamaterials [J]. Materials Today, 2006, 9: 28-35.
[9] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980. doi:  10.1126/science.1133628
[10] Lagarkov A, Kissel V. Near-perfect imaging in a focusing system based on a left-handed-material plate [J]. Physical Review Letters, 2004, 92: 077401. doi:  10.1103/PhysRevLett.92.077401
[11] Liu S, Chen H, Cui T J. A broadband terahertz absorber using multi-layer stacked bars [J]. Applied Physics Letters, 2015, 106(15): 151601. doi:  10.1063/1.4918289
[12] Lv J, Yuan R Y, Song X, et al. Broadband polarization-insensitive terahertz absorber based on heavily doped silicon surface relief structures [J]. Journal of Applied Physics, 2015, 117(1): 013101. doi:  10.1063/1.4905386
[13] Wang J, Tian H, Li S, et al. Efficient terahertz polarization conversion with hybrid coupling of chiral metamaterial [J]. Optics Letters, 2020, 45(5): 1276-1279. doi:  10.1364/OL.388722
[14] Grady N K, Heyes J E, Dibakar Roy C, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction [J]. Science, 2013, 340(6138): 1304-1307. doi:  10.1126/science.1235399
[15] Stephen L, Yogesh N, Subramanian V. Broadband asymmetric transmission of linearly polarized electromagnetic waves based on chiral metamaterial [J]. Journal of Applied Physics, 2018, 123(3): 033103. doi:  10.1063/1.5008614
[16] Walia S, Shah C M, Gutruf P, et al. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales [J]. Applied Physics Reviews, 2015, 2(1): 011303. doi:  10.1063/1.4913751
[17] Zhang F, Feng S, Qiu K, et al. Mechanically stretchable and tunable metamaterial absorber [J]. Applied Physics Letters, 2015, 106(9): 207402.
[18] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate [J]. Nano Letters, 2016, 16(4): 2818-2823. doi:  10.1021/acs.nanolett.6b00618
[19] Kim R, Chung K, Kim J Y, et al. Metal nanoparticle array as a tunable refractive index material over broad visible and infrared wavelengths [J]. ACS Photonics, 2018, 5(4): 1188-1195. doi:  10.1021/acsphotonics.7b01497
[20] Peng W, Wu H. Flexible and stretchable photonic sensors based on modulation of light transmission [J]. Advanced Optical Materials, 2019, 7(12): 1900329. doi:  10.1002/adom.201900329
[21] Xu Z, Lin Y S. A stretchable terahertz parabolic-shaped metamaterial [J]. Advanced Optical Materials, 2019, 7(19): 1900379. doi:  10.1002/adom.201900379
[22] Morits D, Morits M, Ovchinnikov V, et al. Multifunctional stretchable metasurface for the THz range [J]. Journal of Optics, 2014, 16(3): 032001. doi:  10.1088/2040-8978/16/3/032001
[23] Liu N, Giessen H. Coupling effects in optical metamaterials [J]. Angewandte Chemie International Edition, 2010, 49(51): 9838-9852. doi:  10.1002/anie.200906211