[1] Zhang B, Yin S, Liu Y, et al. High performance InGaAs/InP single-photon avalanche diode using DBR-Metal reflector and backside micro-lens [J]. Journal of Lightwave Technology, 2022, 40(12): 3832-3838. doi:  10.1109/JLT.2022.3153455
[2] Liu J, Xu Y, Li Y, et al. Ultra-low dead time free-running InGaAsP single-photon detector with active quenching [J]. Journal of Modern Optics, 2020, 67(13): 1184-1189. doi:  10.1080/09500340.2020.1817591
[3] Tosi A, Acerbi F, Anti M, et al. InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30 ps tail [J]. IEEE Journal of Quantum Electronics, 2012, 48(9): 1227-1232. doi:  10.1109/JQE.2012.2208097
[4] Tosi A, Calandri N, Sanzaro M, et al. Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(6): 192-197. doi:  10.1109/JSTQE.2014.2328440
[5] Signorelli F, Telesca F, Conca E, et al. Low-noise InGaAs/InP single-photon avalanche diodes for fiber-based and free-space applications [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 28(2): 1-10. doi:  10.1109/JSTQE.2021.3104962
[6] Fang Y, Chen W, Ao T, et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm [J]. Review of Scientific Instruments, 2020, 91(8): 83102. doi:  10.1063/5.0014123
[7] Wang S, Ye H, Geng L, et al. Design, fabrication, and characteristic analysis of 64×64 InGaAs/InP single-photon avalanche diode array [J]. Journal of Electronic Materials, 2022, 51(5): 2692-2697. doi:  10.1007/s11664-022-09531-9
[8] Itzler M A, Entwistle M, Krishnamachari U, et al. SWIR Geiger-mode APD detectors and cameras for 3D imaging[C]//Pro-ceedings of SPIE, 2014, 9114: 91140F.
[9] Beijing RMY Electronics Ltd. Pigtailed Coaxial Single Photon Avalanche Diode (SPAD) PGA-314-501. Product Descrip-tion[Z], 2020.
[10] Li Bin, Chen Wei, Huang Xiaofeng, et al. InP cap layer doping density in InGaAs/InP single-photon avalanche diode [J]. Journal of Infrared and Millimeter Waves, 2017, 36(4): 420-424. (in Chinese) doi:  10.11972/j.issn.1001-9014.2017.04.007
[11] Liu C, Ye H, Shi Y. Advances in near-infrared avalanche diode single-photon detectors [J]. Chip, 2022, 1(1): 100005. doi:  10.1016/j.chip.2022.100005
[12] Liang Y, Chen Y, Huang Z, et al. Room-temperature single-photon detection with 1.5-GHz gated InGaAs/InP avalanche photodiode [J]. IEEE Photonics Technology Letters, 2017, 29(1): 142-145. doi:  10.1109/LPT.2016.2630273
[13] Baek S, Yang S, Park C, et al. Room temperature quantum key distribution characteristics of low-noise InGaAs/InP single-photon avalanche diode [J]. Journal of the Korean Physical Society, 2021, 78(7): 634-641. doi:  10.1007/s40042-021-00111-4
[14] Kizilkan E, Karaca U, Pesic V, et al. Guard-ring-free InGaAs/InP single-photon avalanche diode based on a novel one-step Zn-diffusion technique [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(5): 1-9. doi:  10.1109/JSTQE.2022.3162527
[15] Chen H, Jiang M, Sun S, et al. Room temperature continuous frequency tuning InGaAs/InP single-photon detector [J]. AIP Advances, 2018, 8(7): 75106. doi:  10.1063/1.5030141
[16] Tada A, Namekata N, Inoue S. Saturated detection efficiency of single-photon detector based on an InGaAs/InP single-photon avalanche diode gated with a large-amplitude sinusoidal voltage [J]. Japanese Journal of Applied Physics, 2020, 59(7): 72004. doi:  10.35848/1347-4065/ab9625
[17] Comandar L C, Fröhlich B, Dynes J F, et al. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm [J]. Journal of Applied Physics, 2015, 117(8): 83109. doi:  10.1063/1.4913527
[18] Park C, Cho S, Park C, et al. Dual anode single-photon avalanche diode for high-speed and low-noise Geiger-mode operation [J]. Optics Express, 2019, 27(13): 18201. doi:  10.1364/OE.27.018201
[19] Namekata N, Sasamori S, Inoue S. 800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photo-diode operated with a sine wave gating [J]. Opt Express, 2006, 14(21): 10043-10049. doi:  10.1364/OE.14.010043
[20] Namekata N, Adachi S, Inoue S. High-Speed Single-photon Detection Using 2-GHz Sinusoidally Gated InGaAs/InP Avalanche Photodiode[M]. Berlin, Heidelberg: Springer, 2009: 34-38.
[21] Namekata N, Takesue H, Honjo T, et al. High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes [J]. Opt Express, 2011, 19(11): 10632-10639. doi:  10.1364/OE.19.010632
[22] Jun Zhang, Patrick Eraerds, Nino Walenta, et al. 2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution[EB/OL]. (2010-02-17)[2022-12-30]. https://arxiv.org/abs/1002.3240.
[23] Yuan Z L, Kardynal B E, Sharpe A W, et al. High speed single photon detection in the near infrared [J]. Applied Physics Letters, 2007, 91(4): 41114. doi:  10.1063/1.2760135
[24] Baba T, Suzuki Y, Makino K, et al. Development of an InGaAs SPAD 2D array for flash LIDAR[C]//Proeedings of SPIE, 2018,10540: 105400L.
[25] Zhang Xiuchuan, Jiang Liqun, Gao Xinjiang, et al. Fabrication of InGaAs/InP Geiger-mode avalanche focal plane arrays [J]. Semiconductor Optoelectronics, 2015, 36(3): 356-360. (in Chinese)
[26] Aull B F, Duerr E K, Frechette J P, et al. Large-format Geiger-mode avalanche photodiode arrays and readout circuits [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(2): 1-10. doi:  10.1109/JSTQE.2017.2736440
[27] Albota M A, Gurjar R, Mangognia A, et al. The airborne optical systems testbed (AOSTB)[Z]. Lexington, Massachusetts, United States: MIT Lincoln Laboratory, 2017.
[28] Chen Yongqiang, He Yan, Luo Yuan, et al. Pulsed three-dimensional imaging lidar system based on Geiger-mode APD array [J]. Chinese Journal of Lasers, 2023, 50(2): 0210001. (in Chinese)
[29] Ramirez D A, Hayat M M, Karve G, et al. Detection efficiencies and generalized breakdown probabilities for nanosecond-gated near infrared single-photon avalanche photodiodes [J]. IEEE Journal of Quantum Electronics, 2006, 42(2): 137-145. doi:  10.1109/JQE.2005.861627
[30] Ferraro M S, Rabinovich W S, Mahon R, et al. Position sensing and high bandwidth data communication using impact ionization engineered APD arrays [J]. IEEE Photonics Technology Letters, 2019, 31(1): 58-61. doi:  10.1109/LPT.2018.2882886
[31] Meng X, Xie S, Zhou X, et al. InGaAs/InAlAs single photon avalanche diode for 1550 nm photons [J]. Royal Society Open Science, 2016, 3(3): 150584. doi:  10.1098/rsos.150584
[32] Zhang J, Wang H, Zhang G, et al. High-performance InGaAs/InAlAs single-photon avalanche diode with a triple-mesa structure for near-infrared photon detection [J]. Optics Letters, 2021, 46(11): 2670-2673. doi:  10.1364/OL.424606
[33] Zhang Jishen, Xu Haiwen, Zhang Gong, et al. First InGaAs/InAlAs single-photon avalanche diodes (SPADs) heterogeneously integrated with Si photonics on SOI platform for 1550 nm detection[C]//2021 Symposium on VLSI Circuits, 2021.
[34] Tian Y, Li Q, Ding W, et al. High speed and high sensitivity InGaAs/InAlAs single photon avalanche diodes for photon counting communication [J]. Journal of Lightwave Technology, 2022, 40(15): 5245-5253. doi:  10.1109/JLT.2022.3174962
[35] Bank S R, Campbell J C, Maddox S J, et al. Avalanche photodiodes based on the AlInAsSb materials system [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(2): 1-7. doi:  10.1109/JSTQE.2017.2737880
[36] Zheng Danong, Su Xiangbin, Xu Yingqiang, et al. High gain and low dark current AlInAsSb avalanche photodiodes grown by quaternary digital alloys [J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 172-177. (in Chinese) doi:  10.11972/j.issn.1001-9014.2021.02.006