[1] Hirayama M, Misawa T, Miyake T et al. Ab initio studies of magnetism in the iron chalcogenides FeTe and FeSe [J]. Journal of the Physical Society of Japan, 2015, 84(9): 93-103.
[2] Seok J, Lee J H, Cho S, et al. Active hydrogen evolution through lattice distortion in metallic MoTe2 [J]. 2D Materials, 2017, 4(2): 025061. doi:  10.1088/2053-1583/aa659d
[3] Gao M R, Xu Y F, Jiang J, et al. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices [J]. Chemical Society Reviews, 2013, 42(7): 2986-3017.
[4] Liu X, Li D, Yang W, et al. Controlled calcination of ZnSe and ZnTe nanospheres to prepare visible-light catalysts with enhanced photostability and photoactivity [J]. Journal of Materials Science, 2016, 51(24): 11021-11037. doi:  10.1007/s10853-016-0406-6
[5] Chia H L, Latiff N M, Sofer Z, et al. Cytotoxicity of group 5 transition metal ditellurides (MTe2; M=V, Nb, Ta) [J]. Chemistry - A European Journal, 2018, 24(1): 206-211.
[6] Hicks L, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor [J]. Phys Rev B, 1993, 47(24): 8-11.
[7] Zhu H T, Luo J, Liang J K. Synthesis of highly crystalline Bi2Te3 nanotubes and their enhanced thermoelectric properties [J]. Journal of Materials Chemistry A, 2014, 2(32): 12821-12826. doi:  10.1039/C4TA02532F
[8] Muhler M, Bensch W, Schur M. Preparation, crystal structures, experimental and theoretical electronic band structures of cobalt tellurides in the composition range CoTe1.3-CoTe2 [J]. Journal of Physics Condensed Matter, 1998, 10(13): 2947-2962.
[9] Lu T H, Chen C J, Basu M, et al. The CoTe2 nanostructure: An efficient and robust catalyst for hydrogen evolution [J]. Chemical Communications, 2015, 51(95): 17012-17015.
[10] Shi R, Liu X, Shi Y, et al. Selective synthesis and magnetic properties of uniform CoTe and CoTe2 nanotubes [J]. Journal of Materials Chemistry, 2010, 20(36): 7634-7636. doi:  10.1039/c0jm01777a
[11] Yin Y, Xu J, Guo W, et al. A single-step fabrication of CoTe2 nanofilm electrode toward efficient overall water splitting [J]. Electrochimica Acta, 2019, 307: 451-458.
[12] Xie Y, Li B, Su H, et al. Solvothermal route to CoTe2 nanorods [J]. Nanostructured Materials, 1999, 11(4): 539-544.
[13] Jiang L, Zhu Y J, Cui J B. Nanostructures of metal tellurides (PbTe, CdTe, CoTe2, Bi2Te3, and Cu7Te4) with various morphologies: A general solvothermal synthesis and optical properties [J]. European Journal of Inorganic Chemistry, 2010(19): 3005-3011.
[14] Mckendry I G, Thenuwara A C, Sun J, et al. Water oxidation catalyzed by cobalt oxide supported on the mattagamite phase of CoTe2 [J]. ACS Catalysis, 2016, 6(11): 7393-7397.
[15] Huang S, Li S, He Q, et al. Formation of CoTe2 embedded in nitrogen-doped carbon nanotubes-grafted polyhedrons with boosted electrocatalytic properties in dye-sensitized solar cells [J]. Applied Surface Science, 2019, 476: 769-777.
[16] Yang W, Zhang B, Ding N, et al. Fast synthesize ZnO quantum dots via ultrasonic method [J]. Ultrasonics Sonochemistry, 2016, 30: 103-112.
[17] Afshar M, Sargolzaei M, Kordbacheh A H A. Relativistic first-principles study on spin and orbital magnetism of mattagamite (CoTe2) [J]. Physics of Metals and Metallography, 2015, 116(4): 341-345.
[18] Wang Z, Ren X, Wang L, et al. A hierarchical CoTe2-MnTe2 hybrid nanowire array enables high activity for oxygen evolution reactions [J]. Chemical Communications, 2018, 54(78): 10993-10996.
[19] Liu M, Lu X, Guo C, et al. Architecting a mesoporous N-doped graphitic carbon framework encapsulating CoTe2 as an efficient oxygen evolution electrocatalyst [J]. ACS Applied Materials and Interfaces, 2017, 9(41): 36146-36153.
[20] Li H H, Zhang P, Liang C, L et al. Facile electrochemical synthesis of tellurium nanorods and their photoconductive properties [J]. Crystal Research and Technology, 2012, 47(10): 1069-1074.
[21] Liu J W, Chen F, Zhang M, et al. Rapid microwave-assisted synthesis of uniform ultralong te nanowires, optical property, and chemical stability [J]. Langmuir, 2010, 26(13): 11372-11377.
[22] Zhang L, Wang C, Wen D. Preparation by hydrothermal techniques in a tungstosilicate acid solution system and optical properties of tellurium nanotubes [J]. European Journal of Inorganic Chemistry, 2009(22): 3291-3297.
[23] Song J, Lin Y, Zhan Y, et al. Superlong High-Quality Tellurium Nanotubes: Synthesis, Characterization, and Optical Property [J]. Crystal Growth & Design, 2008, 8(6): 1902-1908.
[24] Wang Z, Zhao B, Li J, et al. Interpolation, extrapolation, and truncation in computations of CIE tristimulus values [J]. Color Research and Application, 2017, 42(1): 10-18.
[25] Gentili P L. The fuzziness of a chromogenic spirooxazine [J]. Dyes and Pigments, 2014, 110: 235-248.
[26] 刘翠格, 徐怡庄, 魏永巨, 等. 环丙沙星的光谱性质、质子化作用与荧光量子产率[J]. 光谱学与光谱学分析, 2005, 25(9): 1446-1450.

Liu Cuige, Xu Yizhuang, Wei Yongju, et al. ciprofloxacin(CIP)spectral properties, protonation and fluorescence quantum yield [J]. Spectroscopy and Spectral Analysis, 2005, 25(9): 1446-1450. (in Chinese)
[27] Qian Fuli, Li Xueming, Tang Libin, et al. Potassium doping: Tuning the optical properties of graphene quantum dots [J]. AIP Advances, 2016, 6(7): 075116.