[1] Essiambre R J, Foschini G, Winzer P, et al. Capacity limits of fiber-optic communication systems[C]//2009 Conference on Optical Fiber Communication, New York: IEEE Press, 2009: 1-37.
[2] Alam S U, Jung Y M, Kang Q Y, et al. Recent progress in the development of few mode fiber amplifier[C]//2015 Optical Fiber Communications Conference and Exhibition (OFC), New York: IEEE Press, 2015: Tu3C.1.
[3] Ferreira F M, Fonseca D, Da Silva H J. Design of few-mode fibers with M-modes and low differential mode delay [J]. Journal of Lightwave Technology, 2013, 32(3): 353-360.
[4] Xie Y H, Pei L, Zheng J J, et al. Design of steering wheel-type ring depressed-core 10-mode fiber with fully improved mode spacing [J]. Optics Express, 2021, 29(10): 15067-15077. doi:  10.1364/OE.424554
[5] Hayashi T, Tamura Y, Hasegawa T, et al. 125-μm-cladding coupled multi-core fiber with ultra-low loss of 0.158 dB/km and record-low spatial mode dispersion of 6.1 ps/km[C]//2016 Optical Fiber Communications Conference and Exhibition (OFC), New York: IEEE Press, 2016: Th5A. 1.
[6] Sakamoto T, Matsui T, Saitoh K, et al. Low-loss and low-dmd few-mode multi-core fiber with highest core multiplicity factor[C]//Optical Fiber Communications Conference Postdeadline Paper, Washington: OSA, 2016: Th5A.2.
[7] Xie Y H, Pei L, Zheng J J, et al. Low-DMD and low-crosstalk few-mode multi-core fiber with air-trench/holes assisted graded-index profile [J]. Optics Communications, 2020, 474: 126155. doi:  10.1016/j.optcom.2020.126155
[8] Saitoh K, Koshiba M, Takenaga K, et al. Crosstalk and core density in uncoupled multicore fibers [J]. IEEE Photonics Technology Letters, 2012, 24(21): 1898-1901. doi:  10.1109/LPT.2012.2217489
[9] Xia C, Bai N, Ozdur I, et al. Supermodes for optical transmission [J]. Optics Express, 2011, 19(17): 16653-16664. doi:  10.1364/OE.19.016653
[10] Ho K H, Kahn J M. Statistics of group delays in multimode fiber with strong mode coupling [J]. Journal of Lightwave Technology, 2011, 29(21): 3119-3128. doi:  10.1109/JLT.2011.2165316
[11] Rademacher G, Luís R S, Puttnam B J, et al. A comparative study of few-mode fiber and coupled-core multi-core fiber transmission [J]. Journal of Lightwave Technology, 2022, 40(6): 1590-1596. doi:  10.1109/JLT.2021.3124521
[12] Hayashi T, Sakamoto T, Ryf R, et al. Randomly-coupled multi-core fiber technology[C]//Proceedings of the IEEE, 2022.
[13] Fontaine N K, Antonio-Lopez J, Chen H, et al. Coupled-core optical amplifier[C]//Optical Fiber Communication Conference. IEEE, 2017.
[14] Wada M, Sakamoto T, Yamamotoet T, et al. Cladding pumped randomly coupled 12-core erbium-doped fiber amplifier with low mode-dependent gain[J]. Journal of Lightwave Technology, 2018, 36(5): 1220-1225.
[15] Wada M, Sakamoto T, Aozasa S, et al. L-band randomly-coupled 12 core erbium doped fiber amplifier[C]//2019 Optical Fiber Communications Conference and Exhibition (OFC), 2019: 1-3.
[16] Sakamoto T, Wada M, Aozasa S, et al. Characteristics of randomly coupled 12-core erbium-doped fiber amplifier[J]. Journal of Lightwave Technology, 2021, 39(4): 1186-1193.
[17] 叶华, 谭冠政, 李广等. 基于稀疏表示与粒子群优化算法的非平稳信号去噪研究[J]. 红外与激光工程, 2018, 47(07): 0726005.

Ye Hua, Tan Guanzheng, Li Guang, et al. De-noising nonstationary signal based on sparse representation and particle swarm optimization [J]. Infrared and Laser Engineering, 2018, 47(7): 0726005. (in Chinese)
[18] 张尧, 王宏力, 陆敬辉等. 基于粒子群算法的星敏感器光学误差标定方法[J]. 红外与激光工程, 2017, 46(10): 172-179.

Zhang Yao, Wang Hongli, Lu Jinghui, et al. Calibration method of optical errors for star sensor based on particle swarm optimization algorithm [J]. Infrared and Laser Engineering, 2017, 46(10): 1017002. (in Chinese)
[19] Herbster A F. Few-mode erbium-doped fiber amplifier design challenges for WDM optical networks[C]//2019 SBFoton International Optics and Photonics Conference (SBFoton IOPC). IEEE, 2019.