[1] Brüning J, Denkena B, Dittrich M A, et al. Machine learning approach for optimization of automated fiber placement processes [J]. Procedia CIRP, 2017, 66: 74-78. doi:  10.1016/j.procir.2017.03.295
[2] Harik R, Saidy C, Williams S J, et al. Automated fiber placement defect identity cards: Cause, anticipation, existence, significance, and progression[R]. 2018.
[3] Rudberg T, Nielson J, Henscheid M, et al. Improving AFP cell performance [J]. SAE International Journal of Aerospace, 2014, 7(2): 317. doi:  10.4271/2014-01-2272
[4] Wen L W, Song Q H, Qin L H, et al. Defect detection and closed-loop control system for automated fiber placement forming components based on machine vision and UMAC [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3991-4000. (in Chinese)
[5] Wei T S. Research on image detection method for defects of composite prepreg tapes[D]. Zibo: Shandong University of Technology, 2018. (in Chinese)
[6] Ritter J A, Sjogren J F. Real-time infrared thermography inspection and control for automated composite marterial layup: US. Patent 7, 513, 964[P]. 2009-04-07.
[7] Denkena B, Schmidt C, Völtzer K, et al. Thermographic online monitoring system for automated fiber Placement processes [J]. Composites Part B: Engineering, 2016, 97: 239-243. doi:  10.1016/j.compositesb.2016.04.076
[8] Schmidt C, Denkena B, Völtzer K, et al. Thermal image-based monitoring for the automated fiber placement process [J]. Procedia CIRP, 2017, 62: 27-32. doi:  10.1016/j.procir.2016.06.058
[9] Chen M, Jiang M, Liu X, et al. Intelligent inspection system based on infrared vision for automated fiber placement[C]//2018 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2018: 918-923.
[10] Wang X, Kang S, Zhu W D. Defect detection of laminated surface in the automated fiber placement process based on improved CenterNet [J]. Infrared and Laser Engineering, 2021, 50(10): 20210011. (in Chinese) doi:  10.3788/IRLA20210011
[11] Gregory E D, Juarez P D. In-situ thermography of automated fiber placement parts[C]//AIP Conference Proceedings, 2018, 1949(1): 060005.
[12] Juarez P D, Gregory E D. In situ thermal inspection of automated fiber placement manufacturing[C]//AIP Conference Proceedings, 2019, 2102(1): 120005.
[13] Juarez P D, Gregory E D. In situ thermal inspection of automated fiber placement for manufacturing induced defects [J]. Composites Part B: Engineering, 2021, 220: 109002. doi:  10.1016/j.compositesb.2021.109002
[14] Kang S, Ke Z Z, Wang X, et al. Detection method of defects in automatic fiber placement based on fusion of infrared and visible images [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 556-568. (in Chinese)
[15] Sacco C, Radwan A B, Anderson A, et al. Machine learning in composites manufacturing: A case study of automated fiber placement inspection [J]. Composite Structures, 2020, 250: 112514. doi:  10.1016/j.compstruct.2020.112514
[16] Sacco C. Machine learning methods for rapid inspection of automated fiber placement manufactured composite structures[D]. US: University of South Carolina, 2019: 57-68.
[17] Vaswani A, Shazeer N, Parmar N, et al . Attention is all you need [C]//31st Annual Conference on Neural Information Processing Systems, 2017: 5999 - 6009.
[18] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]//European Conference on Computer Vision. Springer, 2020: 213-229.
[19] Zhu X, Su W, Lu L, et al. Deformable detr: Deformable transformers for end-to-end object detection[EB/OL]. (2020-10-08)[2022-06-20]. https://arxiv.org/abs/2010.04159.
[20] Zheng S, Lu J, Zhao H, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 6881-6890.
[21] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is worth 16x16 words: Transformers for image recognition at scale[C]//International Conference on Learning Representations, 2020.
[22] Srinivas A, Lin T Y, Parmar N, et al. Bottleneck transformers for visual recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 16519-16529.
[23] Zhang Z. Flexible camera calibration by viewing a plane from unknown orientations[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE, 1999: 666-673.
[24] Bolya D, Zhou C, Xiao F, et al. Yolact: Real-time instance segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9157-9166.
[25] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[26] Zhang D, Zhang H, Tang J, et al. Feature pyramid transformer[C]//European Conference on Computer Vision. Springer, 2020: 323-339.