[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306: 666-669. doi:  10.1126/science.1102896
[2] You J W, Bongu S R, Bao Q, et al. Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects [J]. Nanophotonics, 2018, 8: 63-97. doi:  10.1515/nanoph-2018-0106
[3] Yun Q, Li L, Hu Z, et al. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage [J]. Adv Mater, 2019, 32: 1903826.
[4] Hu F, Fei Z. Recent progress on exciton polaritons in layered transition-metal dichalcogenides [J]. Adv Opt Mater, 2019: 1901003.
[5] Cho K, Pak J, Chung S, et al. Recent advances in interface engineering of transition-metal dichalcogenides with organic molecules and polymers [J]. ACS Nano, 2019, 13: 9713-9734. doi:  10.1021/acsnano.9b02540
[6] Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films [J]. Chem Commun, 2010, 46: 3256-3258. doi:  10.1039/b922733d
[7] Li Y, Xu L, Liu H, et al. Graphdiyne and graphyne: from theoretical predictions to practical construction [J]. Chem Soc Rev, 2014, 43: 2572-2586. doi:  10.1039/c3cs60388a
[8] Jia Z, Li Y, Zuo Z, et al. Synthesis and properties of 2D carbon—graphdiyne [J]. Acc Chem Res, 2017, 50: 2470-2478. doi:  10.1021/acs.accounts.7b00205
[9] Wu L, Dong Y, Zhao J, et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes [J]. Adv Mater, 2019, 31: 1807981. doi:  10.1002/adma.201807981
[10] Dong Y, Zhao Y, Chen Y, et al. Graphdiyne-hybridized n-doped TiO2 nanosheets for enhanced visible light photocatalytic activity [J]. J Mater Sci, 2018, 53: 8921-8932. doi:  10.1007/s10853-018-2210-y
[11] Xue Z, Zhu M, Dong Y, et al. An integrated targeting drug delivery system based on the hybridization of graphdiyne and MOFs for visualized cancer therapy [J]. Nanoscale, 2019, 11: 11709-11718. doi:  10.1039/C9NR02017A
[12] Chakraborty C, Vamivakas N, Englund D. Advances in quantum light emission from 2D materials [J]. Nanophotonics, 2019, 8: 2017-2032. doi:  10.1515/nanoph-2019-0140
[13] Caldwell J D, Aharonovich I, Cassabois G, et al. Photonics with hexagonal boron nitride [J]. Nat Rev Mater, 2019, 4: 552-567. doi:  10.1038/s41578-019-0124-1
[14] Kanahashi K, Pu J, Takenobu T. 2D materials for large-area flexible thermoelectric devices [J]. Adv Energy Mater, 2019: 1902842.
[15] Khan K, Tareen A K, Aslam M, et al. Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications [J]. Nanoscale, 2019, 11: 21622-21678. doi:  10.1039/C9NR05919A
[16] Sun J, Choi Y, Choi Y J, et al. 2D–organic hybrid heterostructures for optoelectronic applications [J]. Adv Mater, 2019, 31: 1803831. doi:  10.1002/adma.201803831
[17] Lu S, Zhao C, Zou Y, et al. Third order nonlinear optical property of Bi2Se3 [J]. Opt Express, 2013, 21: 2072-2082. doi:  10.1364/OE.21.002072
[18] Guo Z, Zhang H, Lu S, et al. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics [J]. Adv Funct Mater, 2015, 25: 6996-7002. doi:  10.1002/adfm.201502902
[19] Lu S B, Miao L L, Guo Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material [J]. Opt Express, 2015, 23: 11183-11194. doi:  10.1364/OE.23.011183
[20] Cao R, Wang H D, Guo Z N, et al. Black phosphorous/indium selenide photoconductive detector for visible and near-infrared light with high sensitivity [J]. Adv Opt Mater, 2019, 7: 1900020. doi:  10.1002/adom.201900020
[21] Wang C, Liu H, Bian G, et al. Metal-layer assisted growth of ultralong quasi-2D MOF nanoarrays on arbitrary substrates for accelerated oxygen evolution [J]. Small, 2019, 15: 1906086. doi:  10.1002/smll.201906086
[22] Xue Y, Zhang Q, Wang W, et al. Opening two-dimensional materials for energy conversion and storage: a concept [J]. Adv Energy Mater, 2017, 7: 1602684. doi:  10.1002/aenm.201602684
[23] Pang J, Mendes R G, Bachmatiuk A, et al. Applications of 2D MXenes in energy conversion and storage systems [J]. Chem Soc Rev, 2019, 48: 72-133. doi:  10.1039/C8CS00324F
[24] Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials [J]. Nat Photonics, 2016, 10: 227-238. doi:  10.1038/nphoton.2016.15
[25] Wang M, Cai S, Pan C, et al. Robust memristors based on layered two-dimensional materials [J]. Nat Electron, 2018, 1: 130-136. doi:  10.1038/s41928-018-0021-4
[26] Dong R, Lan C, Li F, Yip S, et al. Incorporating mixed cations in quasi-2D perovskites for high-performance and flexible photodetectors [J]. Nanoscale Horiz, 2019, 4: 1342-1352. doi:  10.1039/C9NH00391F
[27] Anichini C, Czepa W, Pakulski D, et al. Chemical sensing with 2D materials [J]. Chem Soc Rev, 2018, 47: 4860-4908. doi:  10.1039/C8CS00417J
[28] Iannaccone G, Bonaccorso F, Colombo L, et al. Quantum engineering of transistors based on 2D materials heterostructures [J]. Nat Nanotechnol, 2018, 13: 183-191. doi:  10.1038/s41565-018-0082-6
[29] Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures [J]. Science, 2016, 353: aac9439. doi:  10.1126/science.aac9439
[30] Shiue R J, Efetov Dmitri K, Grosso G, et al. Active 2D materials for on-chip nanophotonics and quantum optics [J]. Nanophotonics, 2017, 6: 1329-1342. doi:  10.1515/nanoph-2016-0172
[31] Stoumpos C C, Kanatzidis M G. Halide perovskites: poor man's high-performance semiconductors [J]. Adv Mater, 2016, 28: 5778-5793. doi:  10.1002/adma.201600265
[32] Wang L, Zhou H, Hu J, et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells [J]. Science, 2019, 363: 265-270. doi:  10.1126/science.aau5701
[33] Kostopoulou A, Brintakis K, Nasikas Nektarios K, et al. Perovskite nanocrystals for energy conversion and storage [J]. Nanophotonics, 2019, 8: 1607-1640. doi:  10.1515/nanoph-2019-0119
[34] Jeon N J, Na H, Jung E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells [J]. Nat Energy, 2018, 3: 682-689. doi:  10.1038/s41560-018-0200-6
[35] Kovalenko M V, Protesescu L, Bodnarchuk M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals [J]. Science, 2017, 358: 745-750. doi:  10.1126/science.aam7093
[36] Dou L, Wong A B, Yu Y, et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites [J]. Science, 2015, 349: 1518-1521. doi:  10.1126/science.aac7660
[37] Zhou B, Yan D. Simultaneous long-persistent blue luminescence and high quantum yield within 2D organic-metal halide perovskite micro/nanosheets [J]. Angew Chem Int Ed, 2019, 58: 15128-15135. doi:  10.1002/anie.201909760
[38] Lu S, Ge Y, Sun Z, et al. Ultrafast nonlinear absorption and nonlinear refraction in few-layer oxidized black phosphorus [J]. Photon Res, 2016, 4: 286-292. doi:  10.1364/PRJ.4.000286
[39] Song Y, Chen Y, Jiang X, et al. Nonlinear few-layer MXene-assisted all-optical wavelength conversion at telecommunication band [J]. Adv Opt Mater, 2019, 7: 1801777. doi:  10.1002/adom.201801777
[40] Nayak A, Park J, De Mey K, et al. Large hyperpolarizabilities at telecommunication-relevant wavelengths in donor-acceptor-donor nonlinear optical chromophores [J]. ACS Cent Sci, 2016, 2: 954-966. doi:  10.1021/acscentsci.6b00291
[41] Li G, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces [J]. Nat Rev Mater, 2017, 2: 17010. doi:  10.1038/natrevmats.2017.10
[42] Ye W, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography [J]. Nat Commun, 2016, 7: 11930. doi:  10.1038/ncomms11930
[43] Xing C, Jing G, Liang X, et al. Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air [J]. Nanoscale, 2017, 9: 8096-8101. doi:  10.1039/C7NR00663B
[44] Jiang X, Liu S, Liang W, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH) [J]. Laser Photonics Rev, 2018, 12: 1700229. doi:  10.1002/lpor.201700229
[45] Lu L, Tang X, Cao R, et al. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical kerr media with enhanced stability [J]. Adv Opt Mater, 2017, 5: 1700301. doi:  10.1002/adom.201700301
[46] Welford W T. The Principles of Nonlinear Optics [J]. Journal of Modern Optics, 1985, 21(4): 400.
[47] Dalton L R, Harper A W, Ghosn R, et al. Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics [J]. Chem Mater, 1995, 7: 1060-1081. doi:  10.1021/cm00054a006
[48] Saleh B E A, Teich M C. Fundamentals of photonics~Wiley [J]. Spie Org, 2007, 45: 87.
[49] Zhang R, Fan J, Zhang X, et al. Nonlinear optical response of organic–onorganic halide perovskites [J]. ACS Photonics, 2016, 3: 371-377. doi:  10.1021/acsphotonics.5b00563
[50] Xu J, Semin S, Rasing T, et al. Organized chromophoric assemblies for nonlinear optical materials: towards (sub)wavelength scale architectures [J]. Small, 2015, 11: 1113-1129. doi:  10.1002/smll.201402085
[51] Di Bella S. Second-order nonlinear optical properties of transition metal complexes [J]. Chem Soc Rev, 2001, 30: 355-366. doi:  10.1039/b100820j
[52] Li X, Semin S, Estrada L A, et al. Strong optical nonlinearities of self-assembled polymorphic microstructures of phenylethynyl functionalized fluorenones [J]. Chin Chem Lett, 2018, 29: 297-300. doi:  10.1016/j.cclet.2017.11.001
[53] Xu J, Li X, Xiong J, et al. Halide perovskites for nonlinear optics [J]. Adv Mater, 2019, 32: 1806736.
[54] Wang A, Ye J, Humphrey M G, et al. Graphene and carbon-nanotube nanohybrids covalently functionalized by porphyrins and phthalocyanines for optoelectronic properties [J]. Adv Mater, 2018, 30: 1705704. doi:  10.1002/adma.201705704
[55] Zhao M, Peng R, Zheng Q, et al. Broadband optical limiting response of a graphene–PbS nanohybrid [J]. Nanoscale, 2015, 7: 9268-9274. doi:  10.1039/C5NR01088H
[56] Zheng C, Lei L, Huang J, et al. Facile control of metal nanoparticles from isolated nanoparticles to aggregated clusters on two-dimensional graphene to form optical limiters [J]. J Mater Chem C, 2017, 5: 11579-11589. doi:  10.1039/C7TC03867D
[57] Li X. Design of novel graphdiyne-based materials with large second-order nonlinear optical properties [J]. J Mater Chem C, 2018, 6: 7576-7583. doi:  10.1039/C8TC02146E
[58] Shehzadi K, Ayub K, Mahmood T. Theoretical study on design of novel superalkalis doped graphdiyne: A new donor–acceptor (D-π-A) strategy for enhancing NLO response [J]. Appl Surf Sci, 2019, 492: 255-263. doi:  10.1016/j.apsusc.2019.06.221
[59] Guo J, Shi R, Wang R, et al. Graphdiyne-polymer nanocomposite as a broadband and robust saturable absorber for ultrafast photonics [J]. Laser Photonics Rev, 2020: 1900367.
[60] Shi J, Yu P, Liu F, et al. 3R MoS2 with broken inversion symmetry: a promising ultrathin nonlinear optical Device [J]. Adv Mater, 2017, 29: 1701486. doi:  10.1002/adma.201701486
[61] Quan C, Lu C, He C, et al. Band alignment of MoTe2/MoS2 nanocomposite films for enhanced nonlinear optical performance [J]. Adv Mater Interfaces, 2019, 6: 1801733. doi:  10.1002/admi.201801733
[62] Tian X, Wei R, Liu M, et al. Ultrafast saturable absorption in TiS2 induced by non-equilibrium electrons and the generation of a femtosecond mode-locked laser [J]. Nanoscale, 2018, 10: 9608-9615. doi:  10.1039/C8NR01573B
[63] Xie Z, Wu Y, Sun X, et al. Ultra-broadband nonlinear optical response of two-dimensional h-BN nanosheets and their hybrid gel glasses [J]. Nanoscale, 2018, 10: 4276-4283. doi:  10.1039/C7NR08804C
[64] Zhao G, Zhang F, Wu Y, et al. One-step exfoliation and hydroxylation of boron nitride nanosheets with enhanced optical limiting performance [J]. Adv Opt Mater, 2016, 4: 141-146. doi:  10.1002/adom.201500415
[65] Xu Y, Jiang XF, Ge Y, et al. Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics [J]. J Mater Chem C, 2017, 5: 3007-3013. doi:  10.1039/C7TC00071E
[66] Shi M, Huang S, Dong N, et al. Donor–acceptor type blends composed of black phosphorus and C60 for solid-state optical limiters [J]. Chem Commun, 2018, 54: 366-369. doi:  10.1039/C7CC07937K
[67] Wang K, Szydłowska B M, Wang G, et al. Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared [J]. ACS Nano, 2016, 10: 6923-6932. doi:  10.1021/acsnano.6b02770
[68] Wang C, Zhang T, Lin W. Rational synthesis of noncentrosymmetric metal–organic frameworks for second-order nonlinear optics [J]. Chem Rev, 2012, 112: 1084-1104. doi:  10.1021/cr200252n
[69] Niu R J, Zhou W F, Liu Y, et al. Morphology-dependent third-order optical nonlinearity of a 2D Co-based metal–organic framework with a porphyrinic skeleton [J]. Chem Commun, 2019, 55: 4873-4876. doi:  10.1039/C9CC01363F
[70] Shi J m, Xu W, Liu Q y, et al. Polynitrile-bridged two-dimensional crystal: Eu(lll) complex with strong fluorescence emission and NLO property [J]. Chem Commun, 2002: 756-757.
[71] Biswal B P, Valligatla S, Wang M, et al. Nonlinear optical switching in regioregular porphyrin covalent organic frameworks [J]. Angew Chem Int Ed, 2019, 58: 6896-6900. doi:  10.1002/anie.201814412
[72] Dong Y, Zhang Y, Li X, et al. Chiral perovskites: promising materials toward next-generation optoelectronics [J]. Small, 2019, 15: 1902237. doi:  10.1002/smll.201902237
[73] Xue J, Yang D, Cai B, et al. Photon-induced reversible phase transition in CsPbBr3 perovskite [J]. Adv Funct Mater, 2019, 29: 1807922. doi:  10.1002/adfm.201807922
[74] Hu J, Yan L, You W. Two-dimensional organic–inorganic hybrid perovskites: a new platform for optoelectronic applications [J]. Adv Mater, 2018, 30: 1802041. doi:  10.1002/adma.201802041
[75] Correa Baena J P, Saliba M, Buonassisi T, et al. Promises and challenges of perovskite solar cells [J]. Science, 2017, 358: 739-744. doi:  10.1126/science.aam6323
[76] Grancini G, Nazeeruddin M K. Dimensional tailoring of hybrid perovskites for photovoltaics [J]. Nat Rev Mater, 2019, 4: 4-22. doi:  10.1038/s41578-018-0065-0
[77] Li W, Wang Z, Deschler F, et al. Chemically diverse and multifunctional hybrid organic-inorganic perovskites [J]. Nat Rev Mater, 2017, 2: 16099. doi:  10.1038/natrevmats.2016.99
[78] Stoumpos C C, Cao D H, Clark D J, et al. Ruddlesden-popper hybrid lead iodide perovskite 2D homologous semiconductors [J]. Chem Mater, 2016, 28: 2852-2867. doi:  10.1021/acs.chemmater.6b00847
[79] Nazarenko O, Kotyrba MR, Yakunin S, et al. Guanidinium-formamidinium lead iodide: a layered perovskite-related compound with red luminescence at room temperature [J]. J Am Chem Soc, 2018, 140: 3850-3853. doi:  10.1021/jacs.8b00194
[80] Koh TM, Shanmugam V, Schlipf J, et al. Nanostructuring mixed-dimensional perovskites: a route toward tunable, efficient photovoltaics [J]. Adv Mater, 2016, 28: 3653-3661. doi:  10.1002/adma.201506141
[81] Saparov B, Mitzi D B. Organic-inorganic perovskites: structural versatility for functional materials design [J]. Chem Rev, 2016, 116: 4558-4596. doi:  10.1021/acs.chemrev.5b00715
[82] Lee H-D, Kim H, Cho H, et al. Efficient ruddlesden–popper perovskite light-emitting diodes with randomly oriented nanocrystals [J]. Adv Funct Mater, 2019, 29: 1901225.
[83] Zheng Y, Niu T, Ran X, et al. Unique characteristics of 2D Ruddlesden–Popper (2DRP) perovskite for future photovoltaic application [J]. J Mater Chem A, 2019, 7: 13860-13872. doi:  10.1039/C9TA03217G
[84] Yu S, Yan Y, Abdellah M, et al. Nonconfinement structure sevealed in Dion–Jacobson type quasi-2D perovskite expedites interlayer charge transport [J]. Small, 2019, 15: 1905081. doi:  10.1002/smll.201905081
[85] Mao L, Ke W, Pedesseau L, et al. Hybrid Dion–Jacobson 2D lead iodide perovskites [J]. J Am Chem Soc, 2018, 140: 3775-3783. doi:  10.1021/jacs.8b00542
[86] Li Y, Milić J V, Ummadisingu A, et al. Bifunctional organic spacers for formamidinium-based hybrid Dion–Jacobson two-dimensional perovskite solar cells [J]. Nano Lett, 2019, 19: 150-157. doi:  10.1021/acs.nanolett.8b03552
[87] Zhang Y, Wang P, Tang M C, et al. Dynamical transformation of two-dimensional perovskites with alternating cations in the interlayer space for high-performance photovoltaics [J]. J Am Chem Soc, 2019, 141: 2684-2694. doi:  10.1021/jacs.8b13104
[88] Soe C M M, Stoumpos C C, Kepenekian M, et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance [J]. J Am Chem Soc, 2017, 139: 16297-16309. doi:  10.1021/jacs.7b09096
[89] Mao L, Stoumpos C C, Kanatzidis M G. Two-dimensional hybrid halide perovskites: principles and promises [J]. J Am Chem Soc, 2019, 141: 1171-1190. doi:  10.1021/jacs.8b10851
[90] Zimmermann I, Aghazada S, Nazeeruddin M K. Lead and HTM free stable two-dimensional tin perovskites with suitable band gap for solar cell applications [J]. Angew Chem Int Ed, 2019, 58: 1072-1076. doi:  10.1002/anie.201811497
[91] Li X, Hoffman J, Ke W, et al. Two-dimensional halide perovskites incorporating straight chain symmetric diammonium ions, (NH3CmH2mNH3)(CH3NH3)n−1PbnI3n+1 (m = 4–9; n = 1–4) [J]. J Am Chem Soc, 2018, 140: 12226-12238. doi:  10.1021/jacs.8b07712
[92] Kim H, Huynh K A, Kim S Y, et al. 2D and quasi-2D halide perovskites: applications and progress [J]. Phys Status Solidi RRL, 2019, 14: 1900435.
[93] Wang N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells [J]. Nat Photonics, 2016, 10: 699-704. doi:  10.1038/nphoton.2016.185
[94] Yuan M, Quan LN, Comin R, et al. Perovskite energy funnels for efficient light-emitting diodes [J]. Nat Nanotechnol, 2016, 11: 872. doi:  10.1038/nnano.2016.110
[95] Chen Z, Guo Y, Wertz E, et al . Merits and challenges of ruddlesden–popper soft halide perovskites in electro-optics and optoelectronics [J]. Adv Mater, 2019, 31: 1803514. doi:  10.1002/adma.201803514
[96] Yuan Z, Shu Y, Xin Y, et al. Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions [J]. Chem Commun, 2016, 52: 3887-3890. doi:  10.1039/C5CC09762B
[97] Mao L, Guo P, Kepenekian M, et al. Structural diversity in white-light-emitting hybrid lead bromide perovskites [J]. J Am Chem Soc, 2018, 140: 13078-13088. doi:  10.1021/jacs.8b08691
[98] Zhou L, Liao J F, Huang Z G, et al. Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal [J]. Angew Chem Int Ed, 2019, 58: 15435-15440. doi:  10.1002/anie.201907503
[99] Cortecchia D, Neutzner S, Srimath Kandada A R, et al. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation [J]. J Am Chem Soc, 2017, 139: 39-42. doi:  10.1021/jacs.6b10390
[100] Jung M H. White-light emission from the structural distortion induced by control of halide composition of two-dimensional perovskites ((C6H5CH2NH3)2PbBr4–xClx) [J]. Inorg Chem, 2019, 58: 6748-6757. doi:  10.1021/acs.inorgchem.9b00145
[101] Zhang L, Wu L, Wang K, et al. Pressure-induced broadband emission of 2D organic-inorganic hybrid perovskite (C6H5C2H4NH3)2PbBr4 [J]. Adv Sci, 2019, 6: 1801628. doi:  10.1002/advs.201801628
[102] Li X, Guo P, Kepenekian M, et al. Small cyclic diammonium cation templated (110)-oriented 2D halide (X = I, Br, Cl) perovskites with white-light emission [J]. Chem Mater, 2019, 31: 3582-3590. doi:  10.1021/acs.chemmater.9b01511
[103] Mitzi D B, Wang S, Feild C A, et al. Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets [J]. Science, 1995, 267: 1473-1476. doi:  10.1126/science.267.5203.1473
[104] Mao L, Wu Y, Stoumpos C C, et al. White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites [J]. J Am Chem Soc, 2017, 139: 5210-5215. doi:  10.1021/jacs.7b01312
[105] Li Y Y, Lin C K, Zheng G L, et al. Novel <110>-oriented organic−inorganic perovskite compound stabilized by n-(3-aminopropyl)imidazole with improved optical properties [J]. Chem Mater, 2006, 18: 3463-3469. doi:  10.1021/cm060714u
[106] Cortecchia D, Yin J, Petrozza A, et al. White light emission in low-dimensional perovskites [J]. J Mater Chem C, 2019, 7: 4956-4969. doi:  10.1039/C9TC01036J
[107] Wu Z, Ji C, Sun Z, et al. Broadband white-light emission with a high color rendering index in a two-dimensional organic-inorganic hybrid perovskite [J]. J Mater Chem C, 2018, 6: 1171-1175.
[108] Booker E P, Thomas T H, Quarti C, et al. Formation of long-lived color centers for broadband visible light emission in low-dimensional layered perovskites [J]. J Am Chem Soc, 2017, 139: 18632-18639. doi:  10.1021/jacs.7b10223
[109] McCall K M, Stoumpos C C, Kontsevoi O Y, et al. From 0D Cs3Bi2I9 to 2D Cs3Bi2I6Cl3: dimensional expansion induces a direct band gap but enhances electron–phonon coupling [J]. Chem Mater, 2019, 31: 2644-2650. doi:  10.1021/acs.chemmater.9b00636
[110] Jiang F, Yang D, Jiang Y, et al. Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells [J]. J Am Chem Soc, 2018, 140: 1019-1027. doi:  10.1021/jacs.7b10739
[111] Liu Z, Zhao X, Zunger A, et al. Design of mixed-cation tri-layered Pb-free halide perovskites for optoelectronic applications [J]. Adv Electron Mater, 2019, 5: 1900234. doi:  10.1002/aelm.201900234
[112] Vargas B, Ramos E, Pérez-Gutiérrez E, et al. A direct bandgap copper–antimony halide perovskite [J]. J Am Chem Soc, 2017, 139: 9116-9119. doi:  10.1021/jacs.7b04119
[113] Chai S, Xiong J, Zheng Y, et al. Dielectric phase transition of an A2BX4-type perovskite with a pentahedral to octahedral transformation [J]. Dalton Trans, 2020, 49: 2218-2224. doi:  10.1039/C9DT04270A
[114] Shi E, Gao Y, Finkenauer B P, et al. Two-dimensional halide perovskite nanomaterials and heterostructures [J]. Chem Soc Rev, 2018, 47: 6046-6072. doi:  10.1039/C7CS00886D
[115] Huo C, Cai B, Yuan Z, et al. Two-dimensional metal halide perovskites: theory, synthesis, and optoelectronics [J]. Small Methods, 2017, 1: 1600018. doi:  10.1002/smtd.201600018
[116] Wang J, Shen H, Li W, et al. The role of chloride incorporation in lead-free 2D perovskite (BA)2SnI4: morphology, photoluminescence, phase transition, and charge transport [J]. Adv Sci, 2019, 6: 1802019. doi:  10.1002/advs.201802019
[117] Hwang B, Lee J S. 2D perovskite-based self-aligned lateral heterostructure photodetectors utilizing vapor deposition [J]. Adv Opt Mater, 2019, 7: 1801356. doi:  10.1002/adom.201801356
[118] Chen J, Wang Y, Gan L, et al. Generalized self-doping engineering towards ultrathin and large-sized two-dimensional homologous perovskites [J]. Angew Chem Int Ed, 2017, 56: 14893-14897. doi:  10.1002/anie.201708434
[119] Chen Z, Wang Y, Sun X, et al. Remote phononic effects in epitaxial Ruddlesden–Popper halide perovskites [J]. J Phys Chem Lett, 2018, 9: 6676-6682. doi:  10.1021/acs.jpclett.8b02763
[120] Milot R L, Sutton R J, Eperon G E, et al. Charge-carrier dynamics in 2D hybrid metal–halide perovskites [J]. Nano Lett, 2016, 16: 7001-7007. doi:  10.1021/acs.nanolett.6b03114
[121] Li J, Wang J, Ma J, et al. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals [J]. Nat Commun, 2019, 10: 806. doi:  10.1038/s41467-019-08768-z
[122] Li H, Lu J, Zhang T, et al. Cation-assisted restraint of a wide quantum well and interfacial charge accumulation in two-dimensional perovskites [J]. ACS Energy Lett, 2018, 3: 1815-1823. doi:  10.1021/acsenergylett.8b00683
[123] Guo R, Zhu Z, Boulesbaa A, et al. Synthesis and photoluminescence properties of 2D phenethylammonium lead bromide perovskite nanocrystals [J]. Small Methods, 2017, 1: 1700245. doi:  10.1002/smtd.201700245
[124] Fang H H, Adjokatse S, Shao S, et al. Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites [J]. Nat Commun, 2018, 9: 243. doi:  10.1038/s41467-017-02684-w
[125] Long G, Jiang C, Sabatini R, et al. Spin control in reduced-dimensional chiral perovskites [J]. Nat Photonics, 2018, 12: 528-533. doi:  10.1038/s41566-018-0220-6
[126] Guan J, Zhang C, Gao D, et al. Drastic photoluminescence modulation of an organic molecular crystal with high pressure [J]. Mater Chem Front, 2019, 3: 1510-1517. doi:  10.1039/C9QM00082H
[127] Smith M D, Karunadasa H I. White-light emission from layered halide perovskites [J]. Acc Chem Res, 2018, 51: 619-627. doi:  10.1021/acs.accounts.7b00433
[128] Aharon S, Etgar L. Two dimensional organometal halide perovskite nanorods with tunable optical properties [J]. Nano Lett, 2016, 16: 3230-3235. doi:  10.1021/acs.nanolett.6b00665
[129] Cao Y, Wang N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures [J]. Nature, 2018, 562: 249-253. doi:  10.1038/s41586-018-0576-2
[130] Lee J W, Dai Z, Han T H, et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells [J]. Nat Commun, 2018, 9: 3021. doi:  10.1038/s41467-018-05454-4
[131] Cao D H, Stoumpos C C, Yokoyama T, et al. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden-Popper (CH3(CH2)3NH3)2(CH3NH3)n−1SnnI3n+1 perovskites [J]. ACS Energy Lett, 2017, 2: 982-990. doi:  10.1021/acsenergylett.7b00202
[132] Chen Q, Wu J, Ou X, et al. All-inorganic perovskite nanocrystal scintillators [J]. Nature, 2018, 561: 88-93. doi:  10.1038/s41586-018-0451-1
[133] Wang J, Li J, Lan S, et al. Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors [J]. ACS Nano, 2019, 13: 5473-5484. doi:  10.1021/acsnano.9b00259
[134] Dohner E R, Jaffe A, Bradshaw L R, et al. Intrinsic white-light emission from layered hybrid perovskites [J]. J Am Chem Soc, 2014, 136: 13154-13157. doi:  10.1021/ja507086b
[135] Thouin F, Valverde-Chávez D A, Quarti C, et al. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites [J]. Nat Mater, 2019, 18: 349-356. doi:  10.1038/s41563-018-0262-7
[136] Yangui A, Garrot D, Lauret J S, et al. Optical investigation of broadband white-light emission in self-assembled organic-inorganic perovskite (C6H11NH3)2PbBr4 [J]. J Phys Chem C, 2015, 119: 23638-23647. doi:  10.1021/acs.jpcc.5b06211
[137] Thirumal K, Chong W K, Xie W, et al. Morphology-independent stable white-light emission from self-assembled two-dimensional perovskites driven by strong exciton–phonon coupling to the organic framework [J]. Chem Mater, 2017, 29: 3947-3953. doi:  10.1021/acs.chemmater.7b00073
[138] Mao L, Wu Y, Stoumpos C C, et al. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10–xClx [J]. J Am Chem Soc, 2017, 139: 11956-11963. doi:  10.1021/jacs.7b06143
[139] Ji C, Wang S, Li L, et al. The first 2D hybrid perovskite ferroelectric showing broadband white-light emission with high color rendering index [J]. Adv Funct Mater, 2019, 29: 1805038. doi:  10.1002/adfm.201805038
[140] Huang B, Chen W C, Li Z, et al. Manipulation of molecular aggregation states to realize polymorphism, AIE, MCL, and TADF in a single molecule [J]. Angew Chem Int Ed, 2018, 57: 12473-12477. doi:  10.1002/anie.201806800
[141] Zhang Y L, Ran Q, Wang Q, et al. High-efficiency red organic light-emitting diodes with external quantum efficiency close to 30% based on a novel thermally activated delayed fluorescence emitter [J]. Adv Mater, 2019, 31: 1902368. doi:  10.1002/adma.201902368
[142] Hu H, Meier F, Zhao D, et al. Efficient room-temperature phosphorescence from organic–inorganic hybrid perovskites by molecular engineering [J]. Adv Mater, 2018, 30: 1707621. doi:  10.1002/adma.201707621
[143] An Z, Zheng C, Tao Y, et al. Stabilizing triplet excited states for ultralong organic phosphorescence [J]. Nat Mater, 2015, 14: 685. doi:  10.1038/nmat4259
[144] Ben Haj Salah M, Mercier N, Allain M, et al. Dual phosphorescence from the organic and inorganic moieties of 1D hybrid perovskites of the PbBr4n′+2 series (n′= 2, 3, 4, 5) [J]. J Mater Chem C, 2019, 7: 4424-4433. doi:  10.1039/C9TC00340A
[145] Bolton O, Lee K, Kim H J, et al. Activating efficient phosphorescence from purely organic materials by crystal design [J]. Nat Chem, 2011, 3: 205-210. doi:  10.1038/nchem.984
[146] Zheng H, Liu G, Zhu L, et al. The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition [J]. Adv Energy Mater, 2018, 8: 1800051. doi:  10.1002/aenm.201800051
[147] Ding C, Zhang Y, Liu F, et al. Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells [J]. Nano Energy, 2018, 53: 17-26. doi:  10.1016/j.nanoen.2018.08.031
[148] Yuan C, Li X, Semin S, et al. Chiral lead halide perovskite nanowires for second-order nonlinear optics [J]. Nano Lett, 2018, 18: 5411-5417. doi:  10.1021/acs.nanolett.8b01616
[149] Wang J, Fang C, Ma J, et al. Aqueous synthesis of low-dimensional lead halide perovskites for room-temperature circularly polarized light emission and detection [J]. ACS Nano, 2019, 13: 9473-9481. doi:  10.1021/acsnano.9b04437
[150] Xing C, Huang W, Xie Z, et al. Ultrasmall bismuth quantum dots: facile liquid-phase exfoliation, characterization, and application in high-performance UV–Vis photodetector [J]. ACS Photonics, 2018, 5: 621-629. doi:  10.1021/acsphotonics.7b01211
[151] Xie Z, Xing C, Huang W, et al. Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability [J]. Adv Funct Mater, 2018, 28: 1705833. doi:  10.1002/adfm.201705833
[152] Fan T, Xie Z, Huang W, et al. Two-dimensional non-layered selenium nanoflakes: facile fabrications and applications for self-powered photo-detector [J]. Nanotechnology, 2019, 30: 114002. doi:  10.1088/1361-6528/aafc0f
[153] Huang W, Xie Z, Fan T, et al. Black-phosphorus-analogue tin monosulfide: an emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions [J]. J Mater Chem C, 2018, 6: 9582-9593. doi:  10.1039/C8TC03284J
[154] Huang L, Dong B, Guo X, et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications [J]. ACS Nano, 2019, 13: 913-921. doi:  10.1021/acsnano.8b08758
[155] Brenner T M, Egger D A, Kronik L, et al. Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties [J]. Nat Rev Mater, 2016, 1: 15007. doi:  10.1038/natrevmats.2015.7
[156] Qi X, Zhang Y, Ou Q, et al. Photonics and optoelectronics of 2D metal-halide perovskites [J]. Small, 2018, 14: 1800682. doi:  10.1002/smll.201800682
[157] Zhang Y, Liu Y, Xu Z, et al. Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector [J]. J Mater Chem C, 2019, 7: 1584-1591. doi:  10.1039/C8TC06129G
[158] Li L, Sun Z, Wang P, et al. Tailored engineering of an unusual (C4H9NH3)2(CH3NH3)2Pb3Br10 two-dimensional multilayered perovskite ferroelectric for a high-performance photodetector [J]. Angew Chem Int Ed, 2017, 56: 12150-12154. doi:  10.1002/anie.201705836
[159] Tan Z, Wu Y, Hong H, et al. Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector [J]. J Am Chem Soc, 2016, 138: 16612-16615. doi:  10.1021/jacs.6b11683
[160] Qian L, Sun Y, Sun M, et al. 2D perovskite microsheets for high-performance photodetectors [J]. J Mater Chem C, 2019, 7: 5353-5358.
[161] Xie Z, Zhang F, Liang Z, et al. Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide [J]. Photon Res, 2019, 7: 494-502. doi:  10.1364/PRJ.7.000494
[162] Wu L, Xie Z, Lu L, et al. Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion [J]. Adv Opt Mater, 2018, 6: 1700985. doi:  10.1002/adom.201700985
[163] Xing C, Xie Z, Liang Z, et al. 2D nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics [J]. Adv Opt Mater, 2017, 5: 1700884. doi:  10.1002/adom.201700884
[164] Dean J J, van Driel H M. Graphene and few-layer graphite probed by second-harmonic generation: theory and experiment [J]. Phys Rev B, 2010, 82: 125411. doi:  10.1103/PhysRevB.82.125411
[165] Liu Y, Gao P, Zhang T, et al. Azide passivation of black phosphorus nanosheets: covalent functionalization affords ambient stability enhancement [J]. Angew Chem Int Ed, 2019, 58: 1479-1483. doi:  10.1002/anie.201813218
[166] Szydłowska B M, Tywoniuk B, Blau W J. Size-dependent nonlinear optical response of black phosphorus liquid phase exfoliated nanosheets in nanosecond regime [J]. ACS Photonics, 2018, 5: 3608-3612. doi:  10.1021/acsphotonics.8b00469
[167] Ma W, Lu J, Wan B, et al. Piezoelectricity in multilayer black phosphorus for piezotronics and nanogenerators [J]. Adv Mater, 2020, 32: 1905795. doi:  10.1002/adma.201905795
[168] Skelton J M, Burton L A, Oba F, et al. Chemical and lattice stability of the tin sulfides [J]. J Phys Chem C, 2017, 121: 6446-6454. doi:  10.1021/acs.jpcc.6b12581
[169] Xin C, Zheng J, Su Y, et al. Few-layer tin sulfide: a new black-phosphorus-analogue 2D material with a sizeable band gap, odd–even quantum confinement effect, and high carrier mobility [J]. J Phys Chem C, 2016, 120: 22663-22669. doi:  10.1021/acs.jpcc.6b06673
[170] Sarkar A S, Mushtaq A, Kushavah D, et al. Liquid exfoliation of electronic grade ultrathin tin(II) sulfide (SnS) with intriguing optical response [J]. npj 2D Mater Appl, 2020, 4: 1. doi:  10.1038/s41699-019-0135-1
[171] Wang H, Qian X. Giant optical second harmonic generation in two-dimensional multiferroics [J]. Nano Lett, 2017, 17: 5027-5034. doi:  10.1021/acs.nanolett.7b02268
[172] Ferrando A, Martínez Pastor J P, Suárez I. Toward metal halide perovskite nonlinear photonics [J]. J Phys Chem Lett, 2018, 9: 5612-5623. doi:  10.1021/acs.jpclett.8b01967
[173] Dong R, Zhang T, Feng X. Interface-assisted synthesis of 2D materials: trend and challenges [J]. Chem Rev, 2018, 118: 6189-6235. doi:  10.1021/acs.chemrev.8b00056
[174] Geng D, Yang H Y. Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides [J]. Adv Mater, 2018, 30: 1800865. doi:  10.1002/adma.201800865
[175] Lukatskaya M R, Mashtalir O, Ren C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide [J]. Science, 2013, 341: 1502-1505. doi:  10.1126/science.1241488
[176] Lim D, Suh H, Suryawanshi M, et al. Kinetically controlled growth of phase-pure SnS absorbers for thin film solar cells: achieving efficiency near 3% with long-term stability using an SnS/CdS heterojunction [J]. Adv Energy Mater, 2018, 8: 1702605. doi:  10.1002/aenm.201702605
[177] Franken P A, Hill A E, Peters C W, et al. Generation of optical harmonics [J]. Phys Rev Lett, 1961, 7: 118-119. doi:  10.1103/PhysRevLett.7.118
[178] Duan Y, Ju C, Yang G, et al. Aggregation induced enhancement of linear and nonlinear optical emission from a hexaphenylene derivative [J]. Adv Funct Mater, 2016, 26: 8968-8977. doi:  10.1002/adfm.201602765
[179] Xu J, Semin S, Niedzialek D, et al. Self-assembled organic microfibers for nonlinear optics [J]. Adv Mater, 2013, 25: 2084-2089. doi:  10.1002/adma.201204237
[180] Chervy T, Xu J, Duan Y, et al. High-efficiency second-harmonic generation from hybrid light-matter states [J]. Nano Lett, 2016, 16: 7352-7356. doi:  10.1021/acs.nanolett.6b02567
[181] Boyd R W, Masters B R. Nonlinear optics, third edition [J]. Journal of Biomedical Optics, 2009, 14(2): 029902.
[182] Timurdogan E, Poulton C V, Byrd M J, et al. Electric field-induced second-order nonlinear optical effects in silicon waveguides [J]. Nat Photonics, 2017, 11: 200-206. doi:  10.1038/nphoton.2017.14
[183] Xu J, Semin S, Cremers J, et al. Controlling microsized polymorphic architectures with distinct linear and nonlinear optical properties [J]. Adv Opt Mater, 2015, 3: 948-956. doi:  10.1002/adom.201400637
[184] Xiong J, Li X, Yuan C, et al. Wavelength dependent nonlinear optical response of tetraphenylethene aggregation-induced emission luminogens [J]. Mater Chem Front, 2018, 2: 2263-2271. doi:  10.1039/C8QM00375K
[185] Wang S, Yao Y, Kong J, et al. Highly efficient white-light emission in a polar two-dimensional hybrid perovskite [J]. Chem Commun, 2018, 54: 4053-4056. doi:  10.1039/C8CC01663A
[186] Shi P P, Tang Y Y, Li P F, et al. Symmetry breaking in molecular ferroelectrics [J]. Chem Soc Rev, 2016, 45: 3811-3827. doi:  10.1039/C5CS00308C
[187] Qin J, Huang F, Li X, et al. Enhanced second harmonic generation from ferroelectric HfO2-based hybrid metasurfaces [J]. ACS Nano, 2019, 13: 1213-1222.
[188] Liao W Q, Zhang Y, Hu C L, et al. A lead-halide perovskite molecular ferroelectric semiconductor [J]. Nat Commun, 2015, 6: 7338. doi:  10.1038/ncomms8338
[189] Wu Z, Ji C, Li L, et al. Alloying n-butylamine into CsPbBr3 to give a two-dimensional bilayered perovskite ferroelectric material [J]. Angew Chem Int Ed, 2018, 57: 8140-8143. doi:  10.1002/anie.201803716
[190] Tang Y Y, Li P F, Liao W Q, et al. Multiaxial molecular ferroelectric thin films bring light to practical applications [J]. J Am Chem Soc, 2018, 140: 8051-8059. doi:  10.1021/jacs.8b04600
[191] Li L, Liu X, Li Y, et al. Two-dimensional hybrid perovskite-type ferroelectric for highly polarization-sensitive shortwave photodetection [J]. J Am Chem Soc, 2019, 141: 2623-2629. doi:  10.1021/jacs.8b12948
[192] Han S, Liu X, Liu Y, et al. High-temperature antiferroelectric of lead iodide hybrid perovskites [J]. J Am Chem Soc, 2019, 141: 12470-12474. doi:  10.1021/jacs.9b05124
[193] Liu C, Mei D, Cao W, et al. Mn-based tin sulfide Sr3MnSn2S8 with a wide band gap and strong nonlinear optical response [J]. J Mater Chem C, 2019, 7: 1146-1150. doi:  10.1039/C8TC05904G
[194] Ding F, Nisbet M L, Yu H, et al. Syntheses, structures, and properties of non-centrosymmetric quaternary tellurates BiMTeO6 (M = Al, Ga) [J]. Inorg Chem, 2018, 57: 7950-7956. doi:  10.1021/acs.inorgchem.8b01087
[195] Chen J, Hu C L, Mao F F, et al. A facile route to nonlinear optical materials: three-site aliovalent substitution involving one cation and two anions [J]. Angew Chem Int Ed, 2019, 58: 2098-2102. doi:  10.1002/anie.201813968
[196] Strayer M E, Gupta A S, Akamatsu H, et al. Emergent noncentrosymmetry and piezoelectricity driven by oxygen octahedral rotations in n = 2 Dion–Jacobson phase layer perovskites [J]. Adv Funct Mater, 2016, 26: 1930-1937. doi:  10.1002/adfm.201504046
[197] Kim H G, Tran T T, Choi W, et al. Two new non-centrosymmetric n = 3 layered Dion-Jacobson perovskites: polar RbBi2Ti2NbO10 and nonpolar CsBi2Ti2TaO10 [J]. Chem Mater, 2016, 28: 2424-2432. doi:  10.1021/acs.chemmater.6b00778
[198] Gupta A S, Akamatsu H, Strayer M E, et al. Improper inversion symmetry breaking and piezoelectricity through oxygen octahedral rotations in layered perovskite family, LiRTiO4 (R = rare earths) [J]. Adv Electron Mater, 2016, 2: 1500196. doi:  10.1002/aelm.201500196
[199] Wei W J, Jiang X X, Dong L Y, et al. Regulating second-harmonic generation by van der Waals interactions in two-dimensional lead halide perovskite nanosheets [J]. J Am Chem Soc, 2019, 141: 9134-9139. doi:  10.1021/jacs.9b01874
[200] Yang C K, Chen W N, Ding Y T, et al. The first 2D homochiral lead iodide perovskite ferroelectrics:[R-and S-1-(4-chlorophenyl)ethylammonium]2PbI4 [J]. Adv Mater, 2019, 31: 1808088. doi:  10.1002/adma.201808088
[201] Savoini M, Huber L, Cuppen H, et al. THz generation and detection by fluorenone based organic crystals [J]. ACS Photonics, 2018, 5: 671-677. doi:  10.1021/acsphotonics.7b00792
[202] Maysonnave J, Huppert S, Wang F, et al. Terahertz generation by dynamical photon drag effect in graphene excited by femtosecond optical pulses [J]. Nano Lett, 2014, 14: 5797-5802. doi:  10.1021/nl502684j
[203] Chanana A, Zhai Y, Baniya S, et al. Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites [J]. Nat Commun, 2017, 8: 1328. doi:  10.1038/s41467-017-01517-0
[204] Weis P, Garcia-Pomar J L, Hh M, et al. Spectrally wide-band terahertz wave modulator based on optically tuned graphene [J]. ACS Nano, 2012, 6: 9118-9124. doi:  10.1021/nn303392s
[205] Haynes A S, Saouma F O, Otieno C O, et al. Phase-change behavior and nonlinear optical second and third harmonic generation of the one-dimensional K(1−x)CsxPSe6 and metastable β-CsPSe6 [J]. Chem Mater, 2015, 27: 1837-1846. doi:  10.1021/acs.chemmater.5b00065
[206] Deckers S, Steverlynck J, Willot P, et al. Regioregularity increases second-order nonlinear optical response of polythiophenes in solution [J]. J Phys Chem C, 2015, 119: 18513-18517. doi:  10.1021/acs.jpcc.5b02104
[207] Saouma F O, Stoumpos C C, Wong J, et al. Selective enhancement of optical nonlinearity in two-dimensional organic-inorganic lead iodide perovskites [J]. Nat Commun, 2017, 8: 742. doi:  10.1038/s41467-017-00788-x
[208] Hanamura E, Nagaosa N, Kumagai M, et al. Quantum wells with enhanced exciton effects and optical non-linearity [J]. Mater Sci Eng, B, 1988, 1: 255-258. doi:  10.1016/0921-5107(88)90006-2
[209] Abdelwahab I, Grinblat G, Leng K, et al. Highly enhanced third-harmonic generation in 2D perovskites at excitonic resonances [J]. ACS Nano, 2018, 12: 644-650. doi:  10.1021/acsnano.7b07698
[210] Youngblood N, Peng R, Nemilentsau A, et al. Layer-tunable third-harmonic generation in multilayer black phosphorus [J]. ACS Photonics, 2017, 4: 8-14.
[211] Wei Z, Guo D, Thieme J, et al. The importance of relativistic effects on two-photon absorption spectra in metal halide perovskites [J]. Nat Commun, 2019, 10: 5342. doi:  10.1038/s41467-019-13136-y
[212] Zhou F, Abdelwahab I, Leng K, et al. 2D perovskites with giant excitonic optical nonlinearities for high-performance sub-bandgap photodetection [J]. Adv Mater, 2019, 31: 1904155. doi:  10.1002/adma.201904155
[213] Zhang W F, Huang Y B, Zhang M S. Optical properties of ferroelectric (Pb, La)(Zr, Ti)O3 thin films grown by pulsed laser deposition [J]. Appl Surf Sci, 2000, 158: 185-189. doi:  10.1016/S0169-4332(99)00581-4
[214] Liu W, Li X, Song Y, et al. Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure [J]. Adv Funct Mater, 2018, 28: 1707550. doi:  10.1002/adfm.201707550
[215] Wang J, Mi Y, Gao X, et al. Giant nonlinear optical response in 2D perovskite heterostructures [J]. Adv Opt Mater, 2019, 7: 1900398. doi:  10.1002/adom.201900398
[216] Wang L, Li W, Li M, et al. Ultrastable amine, sulfo cofunctionalized graphene quantum dots with high two-photon fluorescence for cellular imaging [J]. ACS Sustainable Chem Eng, 2018, 6: 4711-4716. doi:  10.1021/acssuschemeng.7b03797
[217] Zhu X, Xu H, Liu Y, et al. Two-photon up-conversion photoluminescence realized through spatially extended gap states in quasi-2D perovskite films [J]. Adv Mater, 2019, 31: 1901240. doi:  10.1002/adma.201901240
[218] Saouma F O, Stoumpos C C, Kanatzidis M G, et al. Multiphoton absorption order of CsPbBr3 as determined by wavelength-dependent nonlinear optical spectroscopy [J]. J Phys Chem Lett, 2017, 8: 4912-4917. doi:  10.1021/acs.jpclett.7b02286
[219] Sharma D, Malik BP, Gaur A. Two and four photon absorption and nonlinear refraction in undoped, chromium doped and copper doped ZnS quantum dots [J]. J Phys Chem Solids, 2015, 87: 163-170. doi:  10.1016/j.jpcs.2015.08.011
[220] Friese D H, Bast R, Ruud K. Five-photon absorption and selective enhancement of multiphoton absorption processes [J]. ACS Photonics, 2015, 2: 572-577. doi:  10.1021/acsphotonics.5b00053
[221] Xiang J, Cai X, Lou X, et al. Biocompatible green and red fluorescent organic dots with remarkably large two-photon action cross sections for targeted cellular imaging and real-time intravital blood vascular visualization [J]. ACS Appl Mater Interfaces, 2015, 7: 14965-14974. doi:  10.1021/acsami.5b03766
[222] Feng R, Sun Y, Tian M, et al. A membrane-permeable dye for living cells with large two-photon excited fluorescence action cross-sections for bioimaging [J]. J Mater Chem B, 2015, 3: 8644-8649. doi:  10.1039/C5TB00940E
[223] Horton N G, Wang K, Kobat D, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain [J]. Nat Photonics, 2013, 7: 205-209. doi:  10.1038/nphoton.2012.336
[224] Mushtaq A, Kushavah D, Ghosh S, et al. Nonlinear optical properties of benzylamine lead(II) bromide perovskite microdisks in femtosecond regime [J]. Appl Phys Lett, 2019, 114: 051902. doi:  10.1063/1.5082376
[225] Manzi A, Tong Y, Feucht J, et al. Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals [J]. Nat Commun, 2018, 9: 1518. doi:  10.1038/s41467-018-03965-8
[226] Lu S, Zhou F, Zhang Q, et al. Layered hybrid perovskites for highly efficient three-photon absorbers: theory and experimental observation [J]. Adv Sci, 2019, 6: 1801626. doi:  10.1002/advs.201801626
[227] Chen W, Bhaumik S, Veldhuis S A, et al. Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals [J]. Nat Commun, 2017, 8: 15198. doi:  10.1038/ncomms15198
[228] Bhaumik S, Veldhuis S A, Ng Y F, et al. Highly stable, luminescent core-shell type methylammonium-octylammonium lead bromide layered perovskite nanoparticles [J]. Chem Commun, 2016, 52: 7118-7121. doi:  10.1039/C6CC01056C
[229] Zhu B H, Zhang H C, Zhang J Y, et al. Surface-related two-photon absorption and refraction of CdSe quantum dots [J]. Appl Phys Lett, 2011, 99: 021908. doi:  10.1063/1.3610561
[230] Zhu B H, Zhang H C, Zhang Z Y, et al. Effect of shell thickness on two-photon absorption and refraction of colloidal CdSe/CdS core/shell nanocrystals [J]. Appl Phys Lett, 2011, 99: 231903. doi:  10.1063/1.3665400
[231] Zheng Q, Zhu H, Chen S C, et al. Frequency-upconverted stimulated emission by simultaneous five-photon absorption [J]. Nat Photonics, 2013, 7: 234-239. doi:  10.1038/nphoton.2012.344
[232] Chen H, Wang F, Liu M, et al. Near-infrared broadband polymer-dot modulator with high optical nonlinearity for ultrafast pulsed lasers [J]. Laser Photonics Rev, 2019, 13: 1800326. doi:  10.1002/lpor.201800326
[233] Li P, Chen Y, Yang T, et al. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers [J]. ACS Appl Mater Interfaces, 2017, 9: 12759-12765. doi:  10.1021/acsami.7b01709
[234] Hong S, Lédée F, Park J, et al. Mode-locking of all-fiber lasers operating at both anomalous and normal dispersion regimes in the C-and L-bands using thin film of 2D perovskite crystallites [J]. Laser Photonics Rev, 2018, 12: 1800118. doi:  10.1002/lpor.201800118
[235] Zhang H, Liao Q, Wu Y, et al. Two-dimensional Ruddlesden–Popper perovskites microring laser array [J]. Adv Mater, 2018, 30: 1706186. doi:  10.1002/adma.201706186
[236] Gu Z, Wang K, Sun W, et al. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers [J]. Adv Opt Mater, 2016, 4: 472-479. doi:  10.1002/adom.201500597
[237] Wei Q, Du B, Wu B, et al. Two-photon optical properties in individual organic-inorganic perovskite microplates [J]. Adv Opt Mater, 2017, 5: 1700809. doi:  10.1002/adom.201700809
[238] Zhang Y, Lim C-K, Dai Z, et al. Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities [J]. Phys Rep, 2019, 795: 1-51. doi:  10.1016/j.physrep.2019.01.005
[239] Yu H, Peng Y, Yang Y, et al. Plasmon-enhanced light–matter interactions and applications [J]. npj Comput Mater, 2019, 5: 45. doi:  10.1038/s41524-019-0184-1
[240] Shang Q, Zhang S, Liu Z, et al. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires [J]. Nano Lett, 2018, 18: 3335-3343. doi:  10.1021/acs.nanolett.7b04847
[241] Kauranen M, Zayats A V. Nonlinear plasmonics [J]. Nat Photonics, 2012, 6: 737-748. doi:  10.1038/nphoton.2012.244
[242] Xie Z, Duo Y, Lin Z, et al. The rise of 2D photothermal materials beyond graphene for clean water production [J]. Adv Sci, 2020, 7: 1902236. doi:  10.1002/advs.201902236
[243] Xie Z, Wang D, Fan T, et al. Black phosphorus analogue tin sulfide nanosheets: synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy [J]. J Mater Chem B, 2018, 6: 4747-4755. doi:  10.1039/C8TB00729B
[244] Chen J, Fan T, Xie Z, et al. Advances in nanomaterials for photodynamic therapy applications: Status and challenges [J]. Biomaterials, 2020, 237: 119827. doi:  10.1016/j.biomaterials.2020.119827