[1] Koester C J, Snitzer E. amplification in a fiber laser [J]. Applied Optics, 1964, 3(10): 1182-1186. doi:  10.1364/AO.3.001182
[2] Stiles e. New developments in IPG fiber laser technology [C]//5th International Workshop on Fiber Lasers, 2009.
[3] O'connor M, Gapontsev V, Fomin V, et al. Power scaling of SM fiber lasers toward 10 kW [C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, 2009.
[4] Cariou J P, Augere B, Valla M. Laser source requirements for coherent lidars based on fiber technology [J]. Comptes Rendus Physique, 2006, 7(2): 213-223. doi:  10.1016/j.crhy.2006.03.012
[5] Diaz R, Chan S C, Liu J M. Lidar detection using a dual-frequency source [J]. Optics Letters, 2006, 31(24): 3600-3602. doi:  10.1364/OL.31.003600
[6] Yang F, Ye Q, Pan Z, et al. 100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application [J]. Optics Communications, 2012, 285(2): 149-152. doi:  10.1016/j.optcom.2011.09.030
[7] Thompson R J, Tu M, Aveline D C, et al. High power single frequency 780 nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals [J]. Optics Express, 2003, 11(14): 1709-1713. doi:  10.1364/OE.11.001709
[8] Taylor L R, Yan F, Calia D B. 50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers [J]. Optics Express, 2010, 18(8): 8540-8555. doi:  10.1364/OE.18.008540
[9] Zhou P, Su R T, Ma Y X, et al. Review of coherent laser beam combining research progress in the past decade [J]. Chinese Journal of Lasers, 2021, 48(4): 0401003. (in Chinese)
[10] Guo F, Kong D, Zhang Q, et al. System development and clock transition spectroscopy detection of transportable 87Sr optical clock [J]. Acta Optica Sinica, 2020, 40(9): 0902001. (in Chinese)
[11] Ma Y, Yan H, Sun Y, et al. Recent progress of key technologies for spectral beam combining of fiber laser with dual-gratings configuration(Invited) [J]. Infrared and Laser Engineering, 2018, 47(1): 0103002. (in Chinese) doi:  10.3788/IRLA201847.0103002
[12] Zheng Y, Yang Y, Wang J, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation [J]. Optics Express, 2016, 24(11): 12063-12071. doi:  10.1364/OE.24.012063
[13] Shi W, Fang Q, Zhu X, et al. Fiber lasers and their applications [Invited] [J]. Applied Optics, 2014, 53(28): 6554-6568. doi:  10.1364/AO.53.006554
[14] Fu S, Shi W, Feng Y, et al. Review of recent progress on single-frequency fiber lasers [Invited] [J]. Journal of the Optical Society of America B, 2017, 34(3): A49-A62. doi:  10.1364/JOSAB.34.000A49
[15] Yang C, Cen X, Xu S, et al. Research progress of single-frequency fiber laser [J]. Acta Optica Sinica, 2021, 41(1): 0114002. (in Chinese) doi:  10.3788/AOS202141.0114002
[16] Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power [J]. Optics Letters, 2014, 39(3): 666-669. doi:  10.1364/OL.39.000666
[17] Huang L, Wu H, Li R, et al. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier [J]. Optics Letters, 2017, 42(1): 1-4. doi:  10.1364/OL.42.000001
[18] Lai W, Ma P, Liu W, et al. 550-W single-frequency all-fiber amplifier with near-diffraction-limited beam quality [J]. Chinese Journal of Lasers, 2020, 47(4): 0415001. (in Chinese) doi:  10.3788/CJL202047.0415001
[19] Wang Y, Ke W, Peng W, et al. 3 kW, 0.2 nm narrow linewidth linearly polarized all-fiber laser based on a compact MOPA structure [J]. Laser Physics Letters, 2020, 17(7): 075101. doi:  10.1088/1612-202X/ab8e42
[20] Ma P, Xiao H, Liu W, et al. All-fiberized and narrow-linewidth 5 kW power-level fiber amplifier based on a bidirectional pumping configuration [J]. High Power Laser Science and Engineering, 2021, 9: e45. doi:  10.1017/hpl.2021.32
[21] Lin H, Tao R, Li C, et al. 3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability [J]. Optics Express, 2019, 27(7): 9716-9724. doi:  10.1364/OE.27.009716
[22] Jiang M, Zhou P, Xiao H, et al. A high-power narrow-linewidth 1018 nm fiber laser based on a single-mode–few-mode–single-mode structure [J]. High Power Laser Science and Engineering, 2015, 3(3): 71-74.
[23] Khitrov V, Samson B, Manyam U, et al. Linearly polarized high power fiber lasers with monolithic PM-LMA-fiber and LMA-grating based cavities and their use for nonlinear wavelength conversion [C]//Conference on Fiber Lasers II: Technology, Systems, and Applications, 2005.
[24] Jauncey I M, Reekie L. Single longitudinal mode operation of a Nd3+-doped fibre laser [J]. Electronics Letters, 1988, 24(1): 24-26. doi:  10.1049/el:19880017
[25] Ball G A, Morey W W. Standing-wave monomode erbium fiber laser [J]. IEEE Photonics Technology Letters, 1991, 3(7): 613-615. doi:  10.1109/68.87930
[26] Ball G A, Glenn W H, Morey W W, et al. Modeling of short, single-frequency, fiber lasers in high-gain fiber [J]. IEEE Photonics Technology Letters, 1993, 5(6): 649-651. doi:  10.1109/68.219698
[27] Zyskind J L, Mizrahi V, Digiovanni D J, et al. Short single frequency Er-doped fibre laser [J]. Electronics Letters, 1992, 28(15): 1385-1387. doi:  10.1049/el:19920881
[28] Spiegelberg C, Geng J, Hu Y, et al. Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003) [J]. Journal of Lightwave Technology, 2004, 22(1): 57-62. doi:  10.1109/JLT.2003.822208
[29] Kaneda Y, Spiegelberg C, Geng J, et al. 200-mW, narrow-linewidth 1064.2-nm Yb-doped fiber laser [C]//Conference on Lasers and Electro-Optics, 2004.
[30] Geng J, Wu J, Jiang S. Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm [J]. Optics Letters, 2007, 32(4): 355-357. doi:  10.1364/OL.32.000355
[31] Wu J, Yao Z, Zong J, et al. Single frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber [C]//Fiber Lasers VI: Technology, Systems, and Applications, 2009.
[32] Pan Z, Cai H, Meng L, et al. Single-frequency phosphate glass fiber laser with 100-mW output power at 1535 nm and its polarization characteristics [J]. Chinese Optics Letters, 2010, 8(1): 52-54. doi:  10.3788/COL20100801.0052
[33] Xu S, Yang Z, Liu T, et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm [J]. Optics Express, 2010, 18(2): 1249-1254. doi:  10.1364/OE.18.001249
[34] Mo S, Xu S, Huang X, et al. A 1014 nm linearly polarized low noise narrow-linewidth single-frequency fiber laser [J]. Optics Express, 2013, 21(10): 12419-12423. doi:  10.1364/OE.21.012419
[35] Xu S, Li C, Zhang W, et al. Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm [J]. Optics Letters, 2013, 38(4): 501-503. doi:  10.1364/OL.38.000501
[36] Feng Z, Mo S, Xu S, et al. A compact linearly polarized low-noise single-frequency fiber laser at 1064 nm [J]. Applied Physics Express, 2013, 6(5): 052701. doi:  10.7567/APEX.6.052701
[37] Yang Q, Xu S, Li C, et al. A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95 μm [J]. Chinese Physics Letters, 2015, 32(9): 62-65.
[38] Guan X, Yang C, Tian Q, et al. High-efficiency sub-watt in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1950 nm [J]. Optics Express, 2018, 26(6): 6817-6825. doi:  10.1364/OE.26.006817
[39] Zhang Z, Boyland A J, Sahu J K, et al. High-power single-frequency thulium-doped fiber DBR laser at 1943 nm [J]. IEEE Photonics Technology Letters, 2011, 23(7): 417-419. doi:  10.1109/LPT.2011.2106491
[40] Fu S, Shi W, Lin J, et al. Single-frequency fiber laser at 1950 nm based on thulium-doped silica fiber [J]. Opt Letters, 2015, 40(22): 5283-5286. doi:  10.1364/OL.40.005283
[41] Fang Q, Xu Y, Fu S, et al. Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930 nm [J]. Optics Letters, 2016, 41(8): 1829-1832. doi:  10.1364/OL.41.001829
[42] Fu S, Shi W, Lin J, et al. 2μm single frequency fiber laser based on thulium-doped silica fiber [C]//Fiber Lasers XIII: Technology, Systems, and Applications, 2016.
[43] Fu S, Shi W, Sheng Q, et al. Compact hundred-mW 2 µm single-frequency Thulium-doped silica fiber laser [J]. IEEE Photonics Technology Letters, 2017, 29(11): 853-856. doi:  10.1109/LPT.2017.2693210
[44] Sun B, Jia J, Huang J, et al. A 1030 nm single-frequency distributed Bragg reflector Yb-doped silica fiber laser [J]. Laser Physics, 2017, 27(10): 105105. doi:  10.1088/1555-6611/aa828c
[45] Liu Z, Xie Y, Cong Z, et al. 110 mW single-frequency Yb:YAG crystal-derived silica fiber laser at 1064 nm [J]. Optics Letters, 2019, 44(17): 4307-4310. doi:  10.1364/OL.44.004307
[46] Wan Y, Wen J, Jiang C, et al. Over 255 mW single-frequency fiber laser with high slope efficiency and power stability based on an ultrashort Yb-doped crystal-derived silica fiber [J]. Photonics Research, 2021, 9(5): 649-656. doi:  10.1364/PRJ.419178
[47] Cai L, Wu F, Wang Y. Analysis for the reflective spectrum characteristics of phase-shifted fiber gratings [J]. Chinese Journal of Lasers, 2009, 36(8): 2070-2075. (in Chinese) doi:  10.3788/CJL20093608.2070
[48] Kringlebotn J T, Archambault J L, Reekie L, et al. Er3+:Yb3+-codoped fiber distributed-feedback laser [J]. Optics Letters, 1994, 19(24): 2101-2103. doi:  10.1364/OL.19.002101
[49] Asseh A, Storoy H, Kringlebotn J T, et al. 10 cm Yb3+ DFB fibre laser with permanent phase shifted grating [J]. Electronics Letters, 1995, 31(12): 969-970. doi:  10.1049/el:19950672
[50] Babin S A, Churkin D V, Ismagulov A E, et al. Single frequency single polarization DFB fiber laser [J]. Laser Physics Letters, 2007, 4(6): 428-432. doi:  10.1002/lapl.200610128
[51] Schülzgen A, Li L, Nguyen D, et al. Distributed feedback fiber laser pumped by multimode laser diodes [J]. Optics Letters, 2008, 33(6): 614-616. doi:  10.1364/OL.33.000614
[52] Agger S, Povlsen J H, Varming P. Single-frequency thulium-doped distributed-feedback fiber laser [J]. Optics Letters, 2004, 29(13): 1503-1505. doi:  10.1364/OL.29.001503
[53] Shen D Y, Zhang Z, Boyland A J, et al. Thulium-doped distributed-feedback fiber laser with > 0.3 W output at 1935 nm [C]//Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, 2007.
[54] Zhang. Z, Shen. D Y, Boyland. A J, et al. High-power Tm-doped fiber distributed-feedback laser at 1943 nm [J]. Optics Letters, 2008, 33(18): 2059-2061. doi:  10.1364/OL.33.002059
[55] Bernier M, Michaudbelleau V, Levasseur S, et al. All-fiber DFB laser operating at 2.8 μm [J]. Optics Letters, 2015, 40(1): 81-84. doi:  10.1364/OL.40.000081
[56] Li Q, Yan F, Peng W, et al. DFB laser based on single mode large effective area heavy concentration EDF [J]. Optics Express, 2012, 20(21): 23684. doi:  10.1364/OE.20.023684
[57] Wolf A A, Skvortsov M I, Kamynin V A, et al. All-fiber holmium distributed feedback laser at 2.07  μm [J]. Optics Letters, 2019, 44(15): 3781-3784. doi:  10.1364/OL.44.003781
[58] Butov O V, Rybaltovsky A A, Vyatkin M Y, et al. Short-cavity DFB fiber lasers [C]//Electromagnetics Research Symposium-spring, 2017.
[59] Butov O V, Rybaltovsky A A, Bazakutsa A P, et al. 1030 nm Yb3+ distributed feedback short cavity silica-based fiber laser [J]. Journal of the Optical Society of America B, 2017, 34(3): A43-A48. doi:  10.1364/JOSAB.34.000A43
[60] Skvortsov M I, Wolf A A, Dostovalov A V, et al. Distributed feedback fiber laser based on a fiber Bragg grating inscribed using the femtosecond point-by-point technique [J]. Laser Physics Letters, 2018, 15(3): 035103. doi:  10.1088/1612-202X/aa9cca
[61] Skvortsov M I, Wolf A A, Vlasov A A, et al. Advanced distributed feedback lasers based on composite fiber heavily doped with erbium ions [J]. Scientific Reports, 2020, 10(1): 14487. doi:  10.1038/s41598-020-71432-w
[62] Sun W, Shi J, Yu Y, et al. All-fiber 1.55 μm erbium-doped distributed-feedback laser with single-polarization, single-frequency output by femtosecond laser line-by-line direct-writing [J]. OSA Continuum, 2021, 4(2): 334-344. doi:  10.1364/OSAC.414523
[63] Ball G A, Morey W W. Continuously tunable single-mode erbium fiber laser [J]. Optics Letters, 1992, 17(6): 420-422. doi:  10.1364/OL.17.000420
[64] Ibsen, M. , Eggleton, et al. Broadly tunable DBR fibre laser using sampled fibre Bragg gratings [J]. Electronics Letters, 1995, 31(1): 37-38. doi:  10.1049/el:19950015
[65] Xu S H, Yang Z M, Zhang W N, et al. 400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser [J]. Optics Letters, 2011, 36(18): 3708-3710. doi:  10.1364/OL.36.003708
[66] Zhu X, W. S, Zong J, et al. 976 nm single-frequency distributed Bragg reflector fiber laser [J]. Optics Letters, 2012, 37(20): 4167. doi:  10.1364/OL.37.004167
[67] Yang C, Zhao Q, Feng Z, et al. 1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser [J]. Optics Express, 2016, 24(26): 29794. doi:  10.1364/OE.24.029794
[68] Hou Y, Qian Z, Pu W. Frequency- and intensity-noise suppression in Yb3+-doped single-frequency fiber laser by a passive optical-feedback loop [J]. Optics Express, 2016, 24(12): 12991. doi:  10.1364/OE.24.012991
[69] Wang Y, Wu J, Zhao Q, et al. Single-frequency DBR Nd-doped fiber laser at 1120  nm with a narrow linewidth and low threshold [J]. Optics Letters, 2020, 45(8): 2263-2266. doi:  10.1364/OL.386477
[70] Fu S, Zhu X, Zong J, et al. Single-frequency Nd3+-doped phosphate fiber laser at 915 nm [J]. Journal of Lightwave Technology, 2021, 39(6): 1808-1813. doi:  10.1109/JLT.2020.3043166
[71] Fu S, Zhu X, Zong J, et al. Diode-pumped 1.15 W linearly polarized single-frequency Yb3+-doped phosphate fiber laser [J]. Optics Express, 2021, 29(19): 30637-30643. doi:  10.1364/OE.438787
[72] Tao Y, Zhang S, Jiang M, et al. High power and high efficiency single-frequency 1030 nm DFB fiber laser [J]. Optics & Laser Technology, 2022, 145: 107519.
[73] Zhu X, Zong J, Miller A, et al. Single-frequency Ho3+-doped ZBLAN fiber laser at 1200 nm [J]. Optics Letters, 2012, 37(20): 4185-4187. doi:  10.1364/OL.37.004185
[74] Zhang W, Li C, Mo S, et al. A compact low noise single frequency linearly polarized DBR fiber laser at 1550 nm [J]. Chinese Physics Letters, 2012, 29(8): 084205. doi:  10.1088/0256-307X/29/8/084205
[75] Hofmann P, Voigtlander C, Nolte S, et al. 550-mW output power from a narrow linewidth all-phosphate fiber laser [J]. Journal of Lightwave Technology, 2013, 31(5): 756-760. doi:  10.1109/JLT.2012.2233392
[76] Yang C, Guan X, Lin W, et al. Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser [J]. Optics Express, 2017, 25(23): 29078-29085. doi:  10.1364/OE.25.029078
[77] Hou Y, Zhang Q, Qi S, et al. 1.5 μm polarization-maintaining dual-wavelength single-frequency distributed Bragg reflection fiber laser with 28 GHz stable frequency difference [J]. Optics Letters, 2018, 43(6): 1383-1386. doi:  10.1364/OL.43.001383
[78] Jiang M, Zhou P, Gu X. Ultralong π-phase shift fiber Bragg grating empowered single-longitudinal mode DFB phosphate fiber laser with low-threshold and high-efficiency [J]. Scientific Reports, 2018, 8(1): 13131-13136. doi:  10.1038/s41598-018-31528-w
[79] Wen Q, Sun Z, Gan Y, et al. Sub-kilohertz linewidth fiber laser by using Bragg grating filters [J]. Applied Optics, 2021, 60(15): 4299-4304. doi:  10.1364/AO.421214
[80] Cen X, Guan X, Yang C, et al. Short-wavelength, in-band-pumped single- frequency DBR Tm3+-doped germanate fiber laser at 1.7 μm [J]. IEEE Photonics Technology Letters, 2021, 33(7): 350-353. doi:  10.1109/LPT.2021.3056047
[81] Morkel P R, Cowle G J, Payne D N. Traveling-wave erbium fiber ring laser with 60 kHz linewidth [J]. Electronics Letters, 1990, 26: 632-634. doi:  10.1049/el:19900414
[82] Jhon Y M, Kim M W, Kim B K, et al. Single-frequency and single-polarization Er3+-doped fiber ring laser with less than 0.7 kHz linewidth [C]//Conference on Lasers & Electro-optics, 1999.
[83] Suzuki A, Takahashi Y, Yoshida M, et al. An ultralow noise and narrow linewidth λ/4-shifted DFB Er-doped fiber laser with a ring cavity configuration [J]. IEEE Photonics Technology Letters, 2007, 19(19): 1463-1465. doi:  10.1109/LPT.2007.902697
[84] He X, Xu S, Li C, et al. 1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber [J]. Optics Express, 2013, 21(18): 20800. doi:  10.1364/OE.21.020800
[85] Poozesh R, Madanipour K, Parvin P. High SNR watt-level single frequency Yb-doped fiber laser based on a saturable absorber filter in a cladding-pumped ring cavity [J]. Journal of Lightwave Technology, 2018, 36: 4880-4886. doi:  10.1109/JLT.2018.2866472
[86] Wang K, Wen Z, Chen H, et al. Single-frequency all-polarization-maintaining ytterbium-doped bidirectional fiber laser [J]. Optics Letters, 2020, 46(2): 404-407.
[87] Lu B, Kang J, Qi X, et al. High-stability broadband wavelength-tunable single-frequency ytterbium-doped all-fiber compound ring cavity [J]. IEEE Photonics Journal, 2017, 9(2): 1-8.
[88] Yang C, Xia L, Wang Y, et al. Wavelength tunable single longitudinal mode fiber laser pinned to 25 GHz spacing [J]. Microwave and Optical Technology Letters, 2014, 56(10): 2404-2406. doi:  10.1002/mop.28604
[89] Li S Y, Ngo N Q, Zhang Z R. Tunable fiber laser with ultra-narrow linewidth using a tunable phase-shifted chirped fiber grating [J]. IEEE Photonics Technology Letters, 2008, 20(17): 1482-1484. doi:  10.1109/LPT.2008.927912
[90] Lu J, Chen S, Bai Y. Study on single-mode compound-ring fiber laser [J]. Optical Technology, 2005, 31(2): 212-213. (in Chinese)
[91] Barnsley P, Urquhart P, Millar C, et al. Fiber Fox-Smith resonators: Application to single-longitudinal-mode operation of fiber lasers [J]. Journal of the Optical Society of America A, 1988, 5(8): 1339-1346. doi:  10.1364/JOSAA.5.001339
[92] Pang H W, Feng Y, Xing L F. Study on linear multi-cavities erbuim-doped fiber laser [J]. Optoelectronic Technique & Information, 2003, 16(6): 24-26. (in Chinese)
[93] Xu O, Lu S, Feng S, et al. Single-longitudinal-mode erbium-doped fiber laser with the fiber-Bragg-grating-based asymmetric two-cavity structure [J]. Optics Communications, 2009, 282(5): 962-965. doi:  10.1016/j.optcom.2008.11.017
[94] Feng T, Yan F P, Li Q, et al. Stable single longitudinal mode erbium-doped silica fiber laser based on an asymmetric linear three-cavity structure [J]. Chinese Physics B, 2013, 22(1): 014208. doi:  10.1088/1674-1056/22/1/014208
[95] Zhao Y, Chang J, Wang Q, et al. Research on a novel composite structure Er-doped DBR fiber laser with a π-phase shifted FBG [J]. Optics Express, 2013, 21(19): 22515-22522. doi:  10.1364/OE.21.022515
[96] Zhang J, Yue C Y, Schinn G W, et al. Stable single-mode compound-ring erbium-doped fiber laser [J]. Journal of Lightwave Technology, 1996, 14(1): 104-109. doi:  10.1109/50.476143
[97] Zhang X, Chen W, Liu Y, et al. Single longitudinal mode fiber laser with multiple ring cavities and its frequency stabilization [J]. Chinese Journal of Lasers, 2007, 34(1): 50-54. (in Chinese)
[98] Tian Y, Feng S, Ma Y, et al. A wide-tunable single-longitudinal-mode fiber laser based on compound ring cavity and tunable fiber Bragg grating [J]. Chinese Journal of Quantum Electronics, 2013, 30(3): 288-292. (in Chinese)
[99] Feng T, Ding D, Zhao Z, et al. Switchable 10 nm-spaced dual-wavelength SLM fiber laser with sub-kHz linewidth and high OSNR using a novel multiple-ring configuration [J]. Laser Physics Letters, 2016, 13(10): 105104. doi:  10.1088/1612-2011/13/10/105104
[100] Wang Z, Shang J, Mu K, et al. Stable single-longitudinal-mode fiber laser with ultra-narrow linewidth based on convex-shaped fiber ring and Sagnac loop [J]. IEEE Access, 2019, 7: 166398-166403. doi:  10.1109/ACCESS.2019.2953886
[101] Liu H, Lu Q, Wei S, et al. Long-term stable 850-Hz linewidth single-longitudinal-mode ring cavity fiber laser using polarization-maintaining fiber [J]. Applied Physics B, 2020, 126(6): 1-7.
[102] Liu H, Zhang J, Wei S, et al. Low-noise compound ring cavity fiber laser with stable single-longitudinal-mode operation [J]. Chinese Journal of Lasers, 2021, 48(5): 0501017. (in Chinese) doi:  10.3788/CJL202148.0501017
[103] Ding J, Chen H, Bai J. Research of tunable single-frequency fiber laser based on fiber ring filter [J]. Laser & Optoelectronics Progress, 2021, 58(13): 366-371. (in Chinese)
[104] Zhang L, Zhang J, Sheng Q, et al. Watt-level 1.7-μm single-frequency thulium-doped fiber oscillator [J]. Optics Express, 2021, 29(17): 27048-27056. doi:  10.1364/OE.434001
[105] Feng T, Yan F, Peng W, et al. A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure [J]. Laser Physics Letters, 2014, 11(4): 045101. doi:  10.1088/1612-2011/11/4/045101
[106] Feng T, Yan F, Liu S, et al. Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings [J]. Laser Physics Letters, 2014, 11(12): 125106. doi:  10.1088/1612-2011/11/12/125106
[107] Feng T, Yan F, Liu S, et al. A switchable and wavelength-spacing tunable single-frequency and single-polarization dual-wavelength erbium-doped fiber laser based on a compound-cavity structure [J]. Laser Physics, 2014, 24(8): 085101. doi:  10.1088/1054-660X/24/8/085101
[108] Park N, Dawson J W, Vahala K J, et al. All fiber, low threshold, widely tunable single-frequency, erbium-doped fiber ring laser with a tandem fiber Fabry-Perot filter [J]. Applied Physics Letters, 1991, 59(19): 2369-2371. doi:  10.1063/1.106018
[109] Polynkin A, Polynkin P, Mansuripur M, et al. Single-frequency fiber ring laser with 1 W output power at 1.5 μm [J]. Optics Express, 2005, 13(8): 3179-3184. doi:  10.1364/OPEX.13.003179
[110] Cheng X P, Shum P, Tse C H, et al. Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-PÉrot etalon [J]. IEEE Photonics Technology Letters, 2008, 20(12): 976-978. doi:  10.1109/LPT.2008.922974
[111] Das G, Chaboyer Z J. Single-wavelength fiber laser with 250 mW output power at 1.57 µm [J]. Optics Express, 2009, 17(10): 7750-7755. doi:  10.1364/OE.17.007750
[112] Bai Y, Yan F, Feng T, et al. Ultra-narrow-linewidth fiber laser in 2 μm band using saturable absorber based on PM-TDF [J]. Chinese Journal of Lasers, 2019, 46(1): 0101003. (in Chinese) doi:  10.3788/CJL201946.0101003
[113] Wu B, Liu Y, Zhang Q, et al. High efficient narrow linewidth fiber laser based on fiber grating Fabry-Perot cavity [J]. Chinese Journal of Lasers, 2007, 34(3): 350-353. (in Chinese)
[114] Wu B, Liu Y, Liu S, et al. 1550 nm high efficient narrow linewidth fiber laser [J]. Journal of Optoelectronics·Laser, 2007, 18(7): 770-772. (in Chinese)
[115] Mo S, Huang X, Xu S, et al. Compact slow-light single-frequency fiber laser at 1550 nm [J]. Applied Physics Express, 2015, 8(8): 82703. doi:  10.7567/APEX.8.082703
[116] Horowitz M, Daisy R. Narrow-linewidth, singlemode erbium-doped fibre laser with intracavity wave mixing in saturable absorber [J]. Electronics Letters, 1994, 30(8): 648-649. doi:  10.1049/el:19940448
[117] Yu L, Qian J, Luo J, et al. Stable single-frequency fiber ring laser with linewidth less than 0.5 kHz [J]. Chinese Journal of Quantum Electronics, 2001, 18(04): 345-348. (in Chinese)
[118] Song Y W, Havstad S A, Starodubov D, et al. 40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG [J]. IEEE Photonics Technology Letters, 2001, 13(11): 1167-1169. doi:  10.1109/68.959352
[119] Chen S, Li W, Zhang M, et al. Optical fiber laser with 30 Hz line-width single mode output [J]. Transaction of Beijing Institute of Technology, 2006, 26(8): 67-70. (in Chinese)
[120] Zhang M, Chen S, Fu L, et al. A study of line-width compression for an er-doped optical fiber laser [J]. Transaction of Beijing Institute of Technology, 2008, 28(10): 894-897. (in Chinese)
[121] Chen J, Zhao Y, Zhu Y, et al. Narrow line-width ytterbium-doped fiber ring laser based on saturated absorber [J]. IEEE Photonics Technology Letters, 2017, 29(5): 439-441. doi:  10.1109/LPT.2017.2655081
[122] Xie Z, Shi C, Sheng Q, et al. A single-frequency 1064-nm Yb3+ -doped fiber laser tandem-pumped at 1018 nm [J]. Optics Communications, 2020, 461: 125262. doi:  10.1016/j.optcom.2020.125262
[123] Zhang J, Sheng Q, Zhang L, et al. Single-frequency 1.7-μm Tm-doped fiber laser with optical bistability of both power and longitudinal mode behavior [J]. Optics Express, 2021, 29(14): 21409-21417. doi:  10.1364/OE.424336
[124] Zhou M, Stewart G, Whitenett G. Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber [J]. Journal of Lightwave Technology, 2006, 24(5): 2179-2183. doi:  10.1109/JLT.2006.872296
[125] Ou P, Jia Y, Cao B, et al. Narrow-linewidth single-polarization frequency-modulated Er-doped fiber ring laser [J]. Chinese Optics Letters, 2008, 6(11): 845-847. doi:  10.3788/COL20080611.0845
[126] Dai Z, Li J, Zhang X, et al. Stable single-longitudinal-mode fiber laser using PM FBG F-P etalon and PM fiber saturable absorber [J]. Optical & Quantum Electronics, 2010, 41(14-15): 1033-1040.
[127] Xu P, Hu Z, Ma M, et al. Mapping the optical frequency stability of the single-longitudinal-mode erbium-doped fiber ring lasers with saturable absorber [J]. Optics & Laser Technology, 2013, 49: 337-342.
[128] Yin T, Song Y, Jiang X, et al. 400 mW narrow linewidth single-frequency fiber ring cavity laser in 2 um waveband [J]. Optics Express, 2019, 27(11): 15794-15799. doi:  10.1364/OE.27.015794
[129] Qi Z, Yin T, Jiang X, et al. Narrow-linewidth high-efficiency single-frequency ytterbium-doped fiber laser with highly linear polarization at 1064  nm [J]. Applied Optics, 2021, 60(10): 2833-2838. doi:  10.1364/AO.420430
[130] Wei F, Yang X, Tong Z, et al. Dual-wavelength narrow-linewidth fiber laser based on F-P fiber ring filter [J]. Optik, 2011, 123(11): 1026-1029.
[131] Fang X, Tong Z, Cao Y, et al. Narrow linewidth ring cavity fiber laser using F-P fiber ring filter [J]. Infrared and Laser Engineering, 2013, 42(2): 329-333. (in Chinese)
[132] Havstad S A. Loop-mirror filters based on saturable-gain or absorber gratings [J]. Optics Letters, 1999, 24(21): 1466-1468. doi:  10.1364/OL.24.001466
[133] Huang S, Feng Y, Dong J, et al. 1083 nm single frequency ytterbium doped fiber laser [J]. Laser Physics Letters, 2005, 2(10): 498-501. doi:  10.1002/lapl.200510032
[134] Sun G, Zhou Y, Hu Y, et al. Switchable erbium-doped fiber ring laser based on Sagnac loop mirror incorporating few-mode high birefringence fiber [J]. Optics Communications, 2011, 284(6): 1608-1611. doi:  10.1016/j.optcom.2010.10.065
[135] Yin M, Huang S, Lu B, et al. Slope efficiency over 30% single-frequency ytterbium-doped fiber laser based on Sagnac loop mirror filter [J]. Applied Optics, 2013, 52(27): 6799-6803. doi:  https://doi.org/10.1364/AO.52.006799
[136] Yeh C H, Huang T J, Yang Z Q, et al. Stable single-longitudinal-mode erbium fiber ring laser utilizing self-injection and saturable absorber [J]. IEEE Photonics Journal, 2017, 9(6): 1-6.
[137] Shi C, Fu S, Shi G, et al. All-fiberized single-frequency silica fiber laser operating above 2 μm based on SMS fiber devices [J]. Optik, 2019, 187: 291-296. doi:  10.1016/j.ijleo.2019.04.087
[138] Zhou J, Luo A, Luo Z, et al. Dual-wavelength single-frequency fiber laser based on graphene saturable absorber [C]//ASIA Communications and Photonics Conference, 2014.
[139] Chen S, Wang Q, Zhao C, et al. Stable single-longitudinal-mode fiber ring laser using topological insulator-based saturable absorber [J]. Journal of Lightwave Technology, 2014, 32(22): 3836-3842.
[140] Deng J, Chen H, Lu B, et al. Single frequency Yb-doped fiber laser based on graphene loop mirror filter [J]. Journal of Optics, 2015, 17(2): 025802. doi:  10.1088/2040-8978/17/2/025802
[141] Lu B, Yuan L, Qi X, et al. MoS2 saturable absorber for single frequency oscillation of highly Yb-doped fiber laser [J]. Chinese Optics Letters, 2016, 14(7): 071404.
[142] Sun Z, Jiang X, Wen Q, et al. Single frequency fiber laser based on an ultrathin metal–organic framework [J]. Journal of Materials Chemistry C, 2019, 7(16): 4662-4666. doi:  10.1039/C8TC03780A
[143] Sabert H, Ulrich R. Gain stabilization in a narrow-band optical filter [J]. Optics Letters, 1992, 17(16): 1161-1163. doi:  10.1364/OL.17.001161
[144] Takushima Y, Yamashita S. Single-frequency and polarization-stable oscillation of Fabry-Perot fiber laser using a nonpolarization-maintaining fiber and an intracavity etalon [J]. IEEE Photonics Technology Letters, 1996, 8(11): 1468-1470. doi:  10.1109/68.541552
[145] Guo Y, Wang D, Liu F, et al. A novel single-mode, linearly polarized, erbium-doped fiber laser with a stabilized frequency [C]//Second International Conference on Electric Technology & Civil Engineering, 2013.
[146] Chang D I, Guy M J. Single-frequency erbium fibre laser using the twisted-mode technique [J]. Electronics Letters, 1996, 32(19): 1786-1787. doi:  10.1049/el:19961194
[147] Mo S, Li Z, Huang X, et al. 820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 μm [J]. Laser Physics Letters, 2014, 11(3): 035101. doi:  10.1088/1612-2011/11/3/035101
[148] Mo S, Huang X, Xu S, et al. 600-Hz linewidth short-linear-cavity fiber laser [J]. Optics Letters, 2014, 39(20): 5818-5821. doi:  10.1364/OL.39.005818
[149] Siegman A E, Evtuhov V. A "Twisted-Mode" technique for obtaining axially uniform energy density in a laser cavity [J]. Applied Optics, 1965, 4(1): 142-143. doi:  10.1364/AO.4.000142
[150] Shevy Y, Shevy D, Lee R, et al. Slow light laser oscillator [C]//Optical Fiber Communication Conference, 2010.
[151] Yuan L M, Lu J B, Kang J, et al. Narrow-linewidth Single-frequency Yitterbium-doped Fiber Laser at 1083 nm [J]. Acta Photonica Sinica, 2016, 45(8): 0814003. doi:  10.3788/gzxb20164508.0814003
[152] Liu Z, Zhou P, Xu X, et al. Coherent Beam Combining of High Average Power Fiber Lasers [M]. Beijing: National Defense Industry Press, 2016. (in Chinese)
[153] Nikles M, Thevenaz L. Brillouin gain spectrum characterization in single-mode optical fibers [J]. Lightwave Technology Journal of, 1997, 15(10): 1842-1851. doi:  10.1109/50.633570
[154] Smith S P, Zarinetchi F, Ezekiel S. Narrow-linewidth stimulated Brillouin fiber laser and applications [J]. Optics Letters, 1991, 16(6): 393-395. doi:  10.1364/OL.16.000393
[155] Cowle G J, Stepanov D Y. Hybrid Brillouin/erbium fiber laser [J]. Optics Letters, 1996, 21(16): 1250-1252. doi:  10.1364/OL.21.001250
[156] Chen W, Zhang Y, Ren M, et al. Experimental study of single-longitudinal-mode Brillouin erbium-doped fiber laser [J]. Acta Optica Sinica, 2008, 29(9): 1740-1744. (in Chinese)
[157] Liu Y, Yu J, Wang W, et al. Narrow Linewidth Single Longitudinal Mode Brillouin Fiber Laser Based on Feedback Fiber Loop [J]. Acta Optica Sinica, 2013, 33(10): 168-172. (in Chinese)
[158] Harun S W, Parvizi R, Shahi S, et al. Compact Bi-EDF-based Brillouin erbium fiber laser operating at the 1560-nm region [J]. IEEE Photonics Journal, 2009, 1(5): 254-258. doi:  10.1109/JPHOT.2009.2037246
[159] Zhou H, Chen M, Chen W, et al. Brillouin-erbium fiber laser with ultra-short ring cavity [J]. Chinese Journal of Lasers, 2012, 39(7): 0702010. (in Chinese) doi:  10.3788/CJL201239.0702010
[160] Mo C, Zhou M, Zhang Y, et al. Ultranarrow-linewidth Brillouin/erbium fiber laser based on 45-cm erbium-doped fiber [J]. IEEE Photonics Journal, 2015, 7(1): 1-6.
[161] Zhonghua O, Xiaoyi B, Yang L, et al. Ultranarrow Linewidth Brillouin Fiber Laser [J]. Photonics Technology Letters, IEEE, 2014, 26(20): 2058-2061. doi:  10.1109/LPT.2014.2346783
[162] Yi L, Zhang M, Zhang J, et al. Single-longitudinal-mode triple-ring Brillouin fiber laser with a saturable absorber ring resonator [J]. Journal of Lightwave Technology, 2017, 35(9): 1744-1749. doi:  10.1109/JLT.2017.2664071
[163] Mo C, Chenyu W, Jianfei W, et al. 53-dB phase noise suppression and Hz-range linewidth emission in compact Brillouin/erbium fiber laser [J]. Optics Express, 2017, 25(16): 19216. doi:  10.1364/OE.25.019216
[164] Mo C, Chenyu W, Jianfei W, et al. Ultra-narrow-linewidth Brillouin/Erbium Fiber Laser [J]. IEEE Photonics Journal, 2017, 7(1): 1-6.
[165] Li Y, Wang C, Qi H, et al. An ultra-narrow linewidth brillouin fiber laser based on distributed feedback fiber laser [J]. Laser & Optoelectronics Progress, 2020, 57(7): 0702010. (in Chinese) doi:  10.3788/LOP57.071401
[166] Zhou Z, Chen L, Bao X. Mode characteristic manipulation of random feedback interferometers in Brillouin random fiber laser [J]. Optics Letters, 2020, 45(3): 678-681. doi:  10.1364/OL.383124
[167] Zhu T, Bao X, Chen L, et al. Experimental study on stimulated Rayleigh scattering in optical fibers [J]. Optics Express, 2010, 18(22): 22958-22963. doi:  10.1364/OE.18.022958
[168] Zhu T, Bao X, Chen L. A single longitudinal-mode tunable fiber ring laser based on stimulated Rayleigh scattering in a nonuniform optical fiber [J]. Journal of Lightwave Technology, 2011, 29(12): 1802-1807. doi:  10.1109/JLT.2011.2142292
[169] Yin G, Saxena B, Bao X. Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber [J]. Optics Express, 2011, 19(27): 25981-25989. doi:  10.1364/OE.19.025981
[170] Zhu T, Chen F Y, Huang S H, et al. An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber [J]. Laser Physics Letters, 2013, 10(5): 055110. doi:  10.1088/1612-2011/10/5/055110
[171] Zhu T, Huang S, Shi L, et al. Rayleigh backscattering: A method to highly compress laser linewidth [J]. Chinese Science Bulletin, 2014, 59(33): 4631-4636. doi:  10.1007/s11434-014-0603-0
[172] Zhu T, Shi L, Huang S. Ultra-narrow linewidth fiber laser with self-injection feedback based on Rayleigh backscattering [C]//CLEO: Science and Innovations, 2014.
[173] Zhu T, Zhang B, Shi L, et al. Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering [J]. Optics Express, 2016, 24(2): 1324-1330. doi:  10.1364/OE.24.001324
[174] Gu J, Yang Y, Liu M, et al. A switchable and stable single-longitudinal-mode, dual-wavelength erbium-doped fiber laser assisted by Rayleigh backscattering in tapered fiber [J]. Journal of Applied Physics, 2015, 5(10): 1039-1040.
[175] Cui J, Dang H, Feng K, et al. Stimulated Brillouin scattering evolution and suppression in an integrated stimulated thermal Rayleigh scattering-based fiber laser [J]. Photonics Research, 2017, 5(3): 233-238. doi:  10.1364/PRJ.5.000233
[176] Li Y, Huang L, Gao L, et al. Optically controlled tunable ultra-narrow linewidth fiber laser with Rayleigh backscattering and saturable absorption ring [J]. Optics Express, 2018, 26(21): 26896-26906. doi:  10.1364/OE.26.026896
[177] Iroegbu P I, Liu M, Lan T, et al. 1310 nm Narrow Linewidth Laser Assisted by the Feedback of Double-FBGs [J]. IEEE Photonics Journal, 2020, 12(5): 1-12.
[178] Pang M, Bao X, Chen L. Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser [J]. Optics Letters, 2013, 38(11): 1866-1868. doi:  10.1364/OL.38.001866
[179] Huang S, Zhu T, Yin G, et al. Tens of hertz narrow-linewidth laser based on stimulated Brillouin and Rayleigh scattering [J]. Optics Letters, 2017, 42(24): 5286-5289. doi:  10.1364/OL.42.005286
[180] Lai W, Ma P, Xiao H, et al. High-power narrow-linewidth fiber laser technology [J]. High Power Laser and Particle Beams, 2020, 32(12): 7-28. (in Chinese)
[181] Xiao H, Zhou P, Wang X, et al. Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier [J]. IEEE Photonics Technology Letters, 2012, 24(13): 1088-1090. doi:  10.1109/LPT.2012.2194780
[182] Loh W H, Samson B N, Dong L, et al. High performance single frequency fiber grating-basederbium/ytterbium [J]. Journal of Lightwave Technology, 1998, 16(1): 114-118. doi:  10.1109/50.654992
[183] Koo K P, Kersey A D, Dandridge A, et al. Measurement of the thermal-noise-limited frequency stability of a fiber-optic Bragg-grating laser [C]//Optical Fiber Communications Conference, 1995.
[184] Ronnekleiv E. Frequency and intensity noise of single frequency fiber Bragg grating lasers [J]. Optical Fiber Technology, 2001, 7(3): 206-235. doi:  10.1006/ofte.2001.0357
[185] Li L, Morrell M, Qiu T, et al. Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power [J]. Applied Physics Letters, 2004, 85(14): 2721-2723. doi:  10.1063/1.1798394
[186] Qiu T, Suzuki S, Schülzgen A, et al. Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers [J]. Optics Letters, 2005, 30(20): 2748-2750. doi:  10.1364/OL.30.002748
[187] Polynkin P, Polynkin A, Mansuripur M, et al. Single-frequency laser oscillator with watts-level output power at 1.5 μm by use of a twisted-mode technique [J]. Optics Letters, 2005, 30(20): 2745-2747. doi:  10.1364/OL.30.002745
[188] Slimen F B, Chen S, Lousteau J, et al. Highly efficient Tm3+ doped germanate large mode area single mode fiber laser [J]. Optical Materials Express, 2019, 9(10): 4115-4125. doi:  10.1364/OME.9.004115
[189] Limpert J, Schreiber T, Nolte S, et al. High-power air-clad large-mode-area photonic crystal fiber laser [J]. Optics Express, 2003, 11(7): 818-823. doi:  10.1364/OE.11.000818
[190] Li L, Schülzgen A, Temyanko V L, et al. Short-length microstructured phosphate glass fiber lasers with large mode areas [J]. Optics Letters, 2005, 30(10): 1141-1143. doi:  10.1364/OL.30.001141
[191] Li L, Schülzgen A, Temyanko V L, et al. Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power [J]. Applied Physics Letters, 2006, 88(16): 161106. doi:  10.1063/1.2196053
[192] Schülzgen A, Li L, Temyanko V L, et al. Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber [J]. Optics Express, 2006, 14(16): 7087-7092. doi:  10.1364/OE.14.007087
[193] Mohammed W S, Smith P, Gu X. All-fiber multimode interference bandpass filter [J]. Optics Letters, 2006, 31(17): 2547. doi:  10.1364/OL.31.002547
[194] Zhou J, He B, Feng Y, et al. High efficiency single-mode-multimode-single-mode fiber laser with diffraction-limited beam output [J]. Applied Optics, 2014, 53(24): 5554-5558. doi:  10.1364/AO.53.005554
[195] Belke S, Becker F, Neumann B, et al. Completely monolithic linearly polarized high-power fiber laser oscillator [C]//Conference on Fiber Lasers XI -Technology, Systems, and Applications, 2014.
[196] Shirakawa A, Hiwada K, Hasegawa S, et al. All-fiber linearly-polarized Yb-doped fiber laser yielding 2.2-W green second harmonics [C]//Conference on Lasers & Electro-optics, 2005.
[197] Jelger P, Wang P, Sahu J K, et al. High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection [J]. Optics Express, 2008, 16(13): 9507-9512. doi:  10.1364/OE.16.009507
[198] Xia, Liu, Songtao, et al. Linearly polarized operation of Yb-doped fiber laser by Brewster's angle-polished fiber end [J]. Chinese Optics Letters, 2010, 8(2): 184-186. doi:  10.3788/COL20100802.0184
[199] Shirakawa A, Kamijo M, Ota J, et al. Characteristics of linearly polarized Yb-doped fiber laser in an all-fiber configuration [J]. IEEE Photonics Technology Letters, 2007, 19(20): 1664-1666. doi:  10.1109/LPT.2007.905060
[200] Wang J, Hu J, Zhang L, et al. A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm [J]. Optics Express, 2012, 20(27): 28373-28378. doi:  10.1364/OE.20.028373
[201] Willis C, Mckee E, Böswetter P, et al. Highly polarized all-fiber thulium laser with femtosecond-laser-written fiber Bragg gratings [J]. Optics Express, 2013, 21(9): 10467-10474. doi:  10.1364/OE.21.010467
[202] Huang L, Zhang H, Wang X, et al. A high-power LD-pumped linearly polarized Yb-doped fiber laser operating at 1152 nm with 42 GHz narrow linewidth and 18 dB PER [J]. Laser Physics, 2016, 26(7): 075105. doi:  10.1088/1054-660X/26/7/075105
[203] Jiang M, Xu H, Zhou P, et al. All-fiber, narrow linewidth and linearly polarized fiber laser in a single-mode-multimode-single-mode cavity [J]. Applied Optics, 2016, 55(22): 6121-6124. doi:  10.1364/AO.55.006121
[204] Su C, Pu X Y, Wang J H, et al. study on output characteristics of linearly polarized all-fiber Yb-doped fiber laser [J]. Chinese Journal of Lasers, 2013, 40(S): s102006. (in Chinese) doi:  10.3788/CJL201340.s102006
[205] Yusheng H, Qirong X, Dan Li Z W, et al. All-fiber linearly polarized laser oscillator by fiber coiling loss control [J]. Chinese Physics B, 2018, 27(4): 044201. doi:  10.1088/1674-1056/27/4/044201
[206] Xu Y, Fang Q, Qin Y, et al. 2 kW narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser [J]. Applied Optics, 2015, 54(32): 9419-9421. doi:  10.1364/AO.54.009419
[207] Huang Z, Liang X, Li C, et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators [J]. Applied Optics, 2016, 55(2): 297-302. doi:  10.1364/AO.55.000297
[208] Jiang M, Ma P, Huang L, et al. kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme [J]. High Power Laser Science and Engineering, 2017, 5(4): 47-51.
[209] Yan P, Huang Y, Sun J, et al. 3.1 kW monolithic MOPA configuration fibre laser bidirectionally pumped by non-wavelength-stabilized laser diodes [J]. Laser Physics Letters, 2017, 14(8): 080001. doi:  10.1088/1612-202X/aa7c92
[210] Huang Y, Yan P, Wang Z, et al. 2.19 kW narrow linewidth FBG-based MOPA configuration fiber laser [J]. Optics Express, 2019, 27(3): 3136-3145. doi:  10.1364/OE.27.003136
[211] Wang Y, Ma Y, Peng W, et al. 2.4 kW, narrow-linewidth, near-diffraction-limited all-fiber laser based on a one-stage master oscillator power amplifier [J]. Laser Physics Letters, 2019, 17(1): 015102.
[212] Huang Y, Xiao Q, Li D, et al. 3 kW narrow linewidth high spectral density continuous wave fiber laser based on fiber Bragg grating [J]. Optics & Laser Technology, 2021, 133: 106538.
[213] Steinke M, Tünnermann H, Kuhn V, et al. Single-frequency fiber amplifiers for next-generation gravitational wave detectors [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1-13.
[214] Wellmann F, Steinke M, Meylahn F, et al. High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors [J]. Optics Express, 2019, 27(20): 28523-28533. doi:  10.1364/OE.27.028523
[215] Chen B, Yu Y, Wu C, et al. High efficiency mid-infrared 3.8 μm MgO: PPLN optical parametric oscillator pumped by narrow linewidth 1064 nm fiber laser [J]. Chinese Optics, 2021, 14(2): 361-367. doi:  10.37188/CO.2020-0169
[216] Rao Y. Recent progress in ultra-long distributed fiber-optic sensing [J]. Acta Physica Sinica, 2017, 66(7): 074207. (in Chinese) doi:  10.7498/aps.66.074207
[217] Shi W, Fang Q, Li J, et al. High-performance fiber lasers for LIDARs [J]. Infrared and Laser Engineering, 2017, 46(8): 0802001. (in Chinese) doi:  10.3788/IRLA201746.0802001
[218] Wang Y, Li T, Qiu Q, et al. Experiments on homodyne coherent optical communication with NPRO as light sources [J]. Infrared and Laser Engineering, 2016, 45(11): 1122003. (in Chinese) doi:  10.3788/IRLA201645.1122003
[219] Mihélic F, Bacquet D, Zemmouri J, et al. Ultrahigh resolution spectral analysis based on a Brillouin fiber laser [J]. Optics Letters, 2010, 35(3): 432-434. doi:  10.1364/OL.35.000432
[220] Yao B, Chen Q, Chen Y, et al. 280 mHz Linewidth DBR Fiber Laser Based on PDH Frequency Stabilization with Ultrastable Cavity [J]. Chinese Journal of Lasers, 2021, 48(5): 0501014. (in Chinese) doi:  10.3788/CJL202148.0501014
[221] Zhao Q, Zhang Z, Wu B, et al. Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection [J]. Photonics Research, 2018, 6(4): 326-331. doi:  10.1364/PRJ.6.000326