[1] Hua Dengxin, Wang Jun. The research progress of ocean laser remote sensing technology(invited) [J]. Infrared and Laser Engineering, 2018, 47(9): 0903003. (in Chinese) doi:  10.3788/irla201847.0903003
[2] Lin Mingsen, He Xianqiang, Jia Yongjun, et al. Progress of ocean satellite remote sensing technology in China [J]. Acta Oceanographica Sinica, 2019, 41(10): 99-112. (in Chinese)
[3] Yin Xiaobin, Wang Zhenzhan, Liu Yuguang, et al. Comparison of sea surface temperature retrieved by infrared and microwave radiometers [J]. Ocean Bulletin, 2009, 11(2): 1-12. (in Chinese)
[4] Yu Xiaolei, Wu Zhaocong. Retrieval of Bohai sea surface temperature using thermal infrared image of HJ-1 satellite [J]. Ocean Technology, 2011(2): 5-10. (in Chinese)
[5] 殷晓斌. 海面风矢量、温度和盐度的被动微波遥感及风对温盐遥感的影响研究[D]. 中国海洋大学, 2007.

Yin Xiaobin. Passive microwave remote sensing of sea surface wind vector, temperature and salinity and the influence of wind on temperature and Salinity Remote Sensing[D]. Qingdao: Ocean University of China, 2007. (in Chinese)
[6] Li Qingxia, Zhang Jing, Guo Wei, et al. Research progress of remote sensing ocean salinity by microwave radiometer [J]. Ocean Technology, 2007, 26(3): 62-67. (in Chinese)
[7] Ren Xiuyun, Wang Ling, Tian Zhaoshuo, et al. Study on practical underwater temperature telemetry system based on Raman spectroscopy [J]. Spectroscopy and Spectral Analysis, 2019, 39(3): 120-125. (in Chinese)
[8] 张雪娟. 基于拉曼散射的海水盐度测量技术研究[D]. 哈尔滨工业大学, 2017

Zhang Xuejuan. Research on seawater salinity measurement technology based on Raman scattering[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
[9] Fry E S, Emery Y, Quan X, et al. Accuracy limitations on Brillouin lidar measurements of temperature and sound speed in the ocean [J]. Applied Optics, 1997, 36(27): 6887-6894. doi:  10.1364/AO.36.006887
[10] Fry E, Katz J, Liu D, et al. Temperature dependence of the Brillouin linewidth in water [J]. Journal of Modern Optics, 2002, 49(3-4): 411-418. doi:  10.1080/09500340110088551
[11] Liu D, Xu J, Li R, et al. Measurements of sound speed in the water by Brillouin scattering using pulsed Nd: YAG laser [J]. Optics Communications, 2002, 203(3-6): 335-340. doi:  10.1016/S0030-4018(02)01181-1
[12] Gao W, Lv Z, Dong Y, et al. A new approach to measure the ocean temperature using Brillouin lidar [J]. Chinese Optics Letters, 2006, 4(7): 428-431.
[13] Yuan Y, Niu Q, Liang K. Measurement error analysis of Brillouin lidar system using F–P etalon and ICCD [J]. Optics Communications, 2016, 375: 58-62. doi:  10.1016/j.optcom.2016.04.065
[14] Liang K, Ma Y, Yu Y, et al. Research on simultaneous measurement of ocean temperature and salinity using Brillouin shift and linewidth [J]. Optical Engineering, 2012, 51(6): 066002. doi:  10.1117/1.OE.51.6.066002
[15] Yu Y, Ma Y, Li H, et al. Simulation on simultaneously obtaining ocean temperature and salinity using dual-wavelength Brillouin Lidar [J]. Laser Physics Letters, 2014, 11(3): 036001. doi:  10.1088/1612-2011/11/3/036001
[16] Xu J, Ren X, Gong W, et al. Measurement of the bulk viscosity of liquid by Brillouin scattering [J]. Applied Optics, 2003, 42(33): 6704-6709.
[17] Fry E, Katz J, Liu D, et al. Temperature dependence of the Brillouin linewidth in water [J]. Journal of Modern Optics, 2010, 10(3-4): 411-418.
[18] Hirschberg J G, Byrne J D, Wouters A W, et al. Speed of sound and temperature in the ocean by Brillouin scattering [J]. Applied Optics, 1984, 23(15): 2624-2628. doi:  10.1364/AO.23.002624
[19] Emery Y, Fry E. Laboratory development of a lidar for measurement of sound velocity in the ocean using Brillouin scattering[C]//Proceedings of SPIE the International Society for Optical Engineering, 1997, 2963: 210-215.
[20] Dai R, Gong W, Xu J, et al. The edge technique as used in Brillouin lidar for remote sensing of the ocean [J]. Applied Physics B, Lasers and Optics, 2004, B79(2): 245-248.
[21] Rudolf A, Walther T. High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration [J]. Optics Letters, 2012, 37(21): 4477-4479. doi:  10.1364/OL.37.004477
[22] Rudolf A, Walther T. Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean [J]. Optical Engineering, 2014, 53(5): 051407. doi:  10.1117/1.OE.53.5.051407
[23] Shi J, Ouyang M, Gong W, et al. A Brillouin lidar system using F-P etalon and ICCD for remote sensing of the ocean [J]. Applied Physics B: Lasers and Optics, 2008, 90(3-4): 569-571. doi:  10.1007/s00340-007-2866-5
[24] Huang J, Ma Y, Zhou B, et al. Processing method of spectral measurement using F-P etalon and ICCD [J]. Optics Express, 2012, 20(17): 18568. doi:  10.1364/OE.20.018568
[25] Liang K, Zhang R, Sun Q, et al. Brillouin shift and linewidth measurement based on double-edge detection technology in seawater [J]. Applied Physics B, 2020, 126(10): 160. doi:  10.1007/s00340-020-07509-1
[26] Kai S, Alexandru P, Marco G, et al. Remote water temperature measurements based on Brillouin scattering with a frequency doubled pulsed Yb: doped fiber amplifier [J]. Sensors, 2008, 8(9): 5820-5831. doi:  10.3390/s8095820